
A Few Words About Proofs

What is a proof?
A proof is nothing more than a water-tight logical argument. There is no

special way a proof has to look on a page (don’t worry about the ”two column”
format they teach in high-school geometry). As long as you state precisely
what you’re trying to show, and then make your case logically and coherently,
it counts as a proof.

How can you tell if an argument is good enough to be a proof? Imagine that
your annoying (but clever) little sister is looking over your shoulder, always
nagging at you: ”And why is this? And how do you know that?” Whenever
you say that something is obvious, she’ll ask, ”How come?”. Whenever you are
tempted to be a little vague, she’ll say, ”I don’t get it–what do you mean by
that?” If your argument passes the annoying little sister test, then it’s a proof!

Proof pitfalls

• The “obviously” claim. Be very careful when you say that something is
“obvious”. This word rings a warning bell in the reader’s mind, because
too often people use it to cover up their ignorance. If by “obviously” you
mean “my intuition tells me that this is so, but I can’t quite explain why,”
then think again: that’s not good enough!

On the other hand, if something is “obvious” because its justification is
clear in your mind and you think that the reader can easily fill in the
details, then you can choose to leave it without further explanation. Of
course, every time you do this, you are taking a risk: the reader might
not think it was so easy, and might suspect that you simply did not know
how to justify your claim. So, if in doubt, always explain!

• Backwards reasoning. All too often in a proof, students will write down
the thing they are trying to show, derive a true statement from it, and
think they are done! (This happens most often when the claim to be
demonstrated is an equation or an inequality, so that the bulk of the proof
is a string of algebraic manipulations.) Such reasoning does not constitute
a proof, even though it’s usually not very difficult to turn it into one: just
start with the true statement you ended with, and show that the desired
result can be derived from it.

• Losing the thread of the argument. Always remember where your proof
is heading, and say only what you need to get there. Some people try
to write down as many true facts as they can, in the hope that at least
one of them will be relevant. Not only does this make the proof difficult
to follow, it also tells your reader that you don’t really know what you’re
doing. Succinctness, in a proof, is key!

If the logical structure of your argument is very complicated, it might
help to break it down into intermediate steps. For example, you might
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first state and prove an auxiliary result (usually called a lemma), and then
use this to prove your main claim. Even something as simple as labeling
the steps in your argument and putting them into separate paragraphs can
make your proof much easier to follow. Feel free to introduce new notation
and symbols as well, if it contributes to the clarity of your presentation.

Not considering all the cases. Be sure that you pay attention to all the
possibilities in a problem, not just the most obvious ones. If you’re divid-
ing by a number, did you check that it’s not 0? If you have just solved a
quadratic equation, did you remember to consider both solutions? If the
problem asks you to prove something for all integers, did you consider the
negative as well as the positives?

Examples vs. proofs You have probably been told many times that an
example is not a proof, but this is not entirely correct. Indeed, if you
are asked to prove that something is true in general, you must provide
a general argument: no number of examples will suffice. On the other
hand, if you want to to prove that something is not always true, general
arguments about why it doesn’t have to be true are completely futile: in
this case, the only correct proof is a single, concrete counterexample.

Another valid use of examples is to illustrate a complicated argument or
definition. This is entirely optional, and no substitute for a clear exposi-
tion; but as long as it is clear that the examples are not an actual part of
your argument, you are welcome to put them in for clarification.

Checking your work
Suppose you’ve written your proof, and looked over carefully it to check that

you haven’t fallen into any of the pitfalls listed above. Everything seems logical
and clear, and even your annoying little sister is satisfied. Now what?

When the answer to a problem is a number, it is usually easy to check
whether your solution is correct: just plug the number back in, and see if
everything works out. But how do you check whether a proof is correct?

First make sure that what you’re proving really is true: a proof of a false
statement cannot possibly be right! Look for counterexamples to your claim. If
you find one, plug it into your proof and see where things go wrong. Sometimes,
it’s easy to fix the problem: for example, maybe you just needed to specify that
your claim holds only for positive integers, which is the only case you cared about
anyway. But other times, you will discover a serious gap in your reasoning. Pay
attention to exactly what went wrong with the counterexample—it might give
you an idea of how to fix the mistake.

What if you’re sure that the statement you’re proving is true—for example,
if the problem specifically asks you to prove it? In that case, reread statement
of the problem carefully. Does your proof use all the information that you are
given? If not, chances are that somewhere you are missing a step. For example,
suppose that the problem is:

Show that for every prime number p > 3, p2 − 1 is divisible by 24,
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and you notice that in your solution, you never use the assumption that p > 3.
Then your proof should, in theory, work for p = 2 as well! But 22 − 1 = 3 is
not divisible by 24, so you know you must have made a mistake somewhere. Go
back through the proof, substituting 2 for p everywhere. At some point you’ll
get to a step that sounds ridiculous; that’s the one you need to fix.

(Every year, the Department of Mathematics at Harvard University receives
dozens of letters in which people claim to give an elementary proof of the cele-
brated Fermat’s Last Theorem: xn+yn = zn has no non-trivial integer solutions
for n > 2. But most of these “proofs” never even make use of the assumption
that n > 2. There’s no need to look for the exact place where such an argument
fails: you know it can’t be right, since 32 + 42 = 52.)

Additional comments

• Potentially obscure theorems that help in the proof may be used, with
appropriate references. It’s also fine to use advanced material if this leads
to a simpler solution of a problem stated in elementary terms. However,
if the problem asks for a common theorem to be proved or follows imme-
diately from a well-known result, then the theorem should be proved, not
just cited. Don’t trivialize the problem!

• Sometimes, a problem can be solved by lengthy exhaustive computer
searches. Such solutions generally will not receive full credit since they
defeat the mathematical purpose of the problem.

A few sample proofs and non-proofs

The Problem: You are given two boxes, A and B. Box A contains 100 white
marbles, and box B contains 100 black marbles. First you take out 10 marbles
from box A and put them into box B. Then you take out 10 marbles from box
B and put them into box A. Which is now larger: the number of black marbles
in box A or the number of white marbles in box B?

Solution 1: The two numbers are the same.

• Comments: This is the correct answer, but because no explanation is
given, the solution will receive only partial credit at best!

Solution 2: The two numbers are the same. Even though not all the
marbles we move from B to A might be black, if they are not all black then
we must be moving some white marbles back to A. So both boxes will end up
with fewer than 10 marbles of the “wrong” color in them, and they will have
the same number of “wrong” marbles.

• Comments: This is the correct general idea, but much too vague for a
proof. In particular, the final statement does not follow logically from
anything that came before.
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Solution 3: The two numbers are the same. Even though not all the
marbles we move from B to A might be black, if they are not all black then we
must be moving some white marbles back to A, so both boxes will end up with
fewer than 10 marbles of the “wrong” color in them. For example, if among the
10 marbles we move from B to A, 3 are white and 7 are black, then A will end
up with 7 black marbles, and B will have 10-3=7 white marbles. Thus A and
B will have the same number of marbles of the “wrong” color.

• Comments: This is better: it relies on an example to clarify the vague
idea, and does succeed in conveying the intuition that the numbers really
will be the same. However, an example is just not enough: a general
argument is still missing.

Solution 4: After we have moved the 10 white marbles from A to B, the
fraction of white marbles in B is 1/11, which is close to 1/10. So we expect
approximately one out of the 10 marbles we move from A to B to be white.
Thus, at the end, B is left with 9 white marbles, and A gets 9 black marbles.
So the answer is: the numbers are the same.

• Comments: This solution brings in an irrelevant consideration– probabil-
ity. Unless otherwise indicated, a problem always asks not for the most
probable but for all possible solutions. Moreover, this solution assumes
that between the two transfers of 10 marbles, the marbles in box B were
thoroughly mixed–which is nowhere indicated in the statement of the prob-
lem!

Solution 5: If the batch of 10 marbles we moved from B to A contained k
black ones and 10− k white ones, then A, at the end, has k black marbles, and
B has 10− (10− k) = k white marbles. Thus the two numbers are the same.

• Comments: A valid proof! Notice that it is shorter than any of the other
solutions (except 1). An argument need not be long to make its point—it
only needs to be logical and complete.
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