
Berkeley Math Circle: Monthly Contest 7 Solutions

1. Recall that a number is prime if its divisors over the positive integers are only 1 and
itself. For instance, one can verify that 3 is prime, but note that 15 is not prime
because it is divisible by 3 and 5 in addition to 1 and itself.

How many positive integers n are there such that n2+1 and n2+6 are both prime?

SOLUTION. If n > 1 is odd, then n2 + 1 is even and composite. If n > 1 is even,
then n2 + 6 is even and composite. Hence n = 1 is our only solution, as indeed
11 + 1 = 2 and 12 + 6 = 7 are both prime. Thus the answer is 1 .

2. An n-digit number is narcissistic if it equals the sum of the nth powers of its digits.
For instance, the number 32164049650 is a narcissistic 11-digit number because

32164049650 = 311 + 211 + 111 + 611 + 411 + 011 + 411 + 911 + 611 + 511 + 011.

It turns out there are exactly two narcissistic 11-digit numbers under 40000000000.
Let them be x and y. Determine the value of |x− y|.

SOLUTION.Of course, up to reordering x and y are 32164049650 and 32164049651.
Hence |x− y| = 1 .

3. In chess, a queen can move horizontally, vertically, or diagonally. A square of a
chessboard is attacked by a queen if the queen can move there in one move.

Let n be a positive integer such that n ≥ 6. Is it possible to place n− 2 queens on
a n× n chessboard such that every empty square is attacked by at least one queen?
You are given that for all m ≥ 4, it is possible to place m queens on an m×m grid
such that no two queens attack each other.

SOLUTION. The answer is yes . Fix n ≥ 6. As given, let P be a placement of

n− 2 queens on an (n− 2)× (n− 2) chessboard such that no two queens attack each
other. Thus P has exactly one queen in every row and exactly one queen in every
column. Let q be one of the queens in P, and insert rows r1 and r2 and columns c1
and c2 on either side of q. This yields a n × n chessboard with a placement P ′ of
n− 2 queens. If a square s of P ′ is contained in a row r or column c other than the
ri, then r or c contains a queen from P attacking s. The only cases left to consider
are the four squares given by intersecting the ri with the ci, but they must all be
diagonally be attacked by q. We are done.

4. It is helpful to read the previous problem to obtain relevant background information.

Let k be a positive integer satisfying k ≥ 4, and let m < k
3 . Show that one cannot

place m queens on a k × k chessboard so that every empty square is attacked by at
least one queen.
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SOLUTION. Fix k ≥ 4 and let m < k
3 . Consider an arbitrary placement of m

queens on a k × k chessboard. Let r and c be the number of distinct rows and
columns of the chessboard, respectively, on which at least one queen is placed.

One can check that the number of empty squares attacked vertically by one or more
of queens is ck−m, and the number of empty squares attacked horizontally that have
not been accounted for already is r(k − c). An arbitrarily placed queen diagonally
attacks at most two squares in each column. Since c of these columns have already
been accounted for, it follows that, out of the set of squares not included in our
previous count, the queens diagonally attack at most 2m(k − c) empty squares.

It follows that the number of squares attacked by the queens is at most

(ck −m) + r(k − c) + 2m(k − c) = (2k − 2c− 1)m+ (c+ r)k − rc.

It suffices to show that this number is at most k2 − m. Equivalently, it suffices to
demonstrate the bound

2(k − c)m+ (c+ r)k < rc+ k2.

Since m < k
3 , observe that

δ = 2(k − c)m+ (c+ r)k − rc− k2

<
2(k − c)k

3
+ (c+ r)k − rc− k2

= −(k − 3r)(k − c)

3
.

Since c ≤ k ≤ 3r, it follows that δ < 0, as desired.

5. One day at Evan Corporation LLC, developer Aerith writes a polynomial P (x) on
the whiteboard in the break room. Like everyone else, the polynomial is written
so that the degrees of each term strictly decrease when reading from left to right.
Unfortunately, CEO V. Enhance accidentally smudges part of the polynomial! Here
is a snapshot of the current disarray of the whiteboard:

Mr. Enhance asks three of Aerith’s coworkers on the details of P .

• Ron recalls that P (5) = 3.

• Adi says that the squares of the roots of P add up to exactly 63.

• Leo says that P is divisible by x3 − 2x2 − 17x− 42.

Of these three statements, it turns out that exactly two of them are truthful. De-
termine the value of P (−4).

SOLUTION. We deduce that

P (x) = 2x4 + bx3 + cx2 − 397x+ 438

for coefficients b and c.

2



Ron’s claim implies that 2 · 625 + 125b+ 25c− 397 · 5 + 438 = 3, or equivalently

5b+ c = 12.

Adi’s claim can be interpreted using Vieta’s formulas to say that (− b
2)

2−2( c2) = 63,
which simplifies to having

b2 − 4c = 252.

Leo’s claim that P is divisible by x3 − 2x2 − 17x− 42 = (x− 6)(x2 +4x+7) implies
that P (6) = 0, so that 2 · 1296 + 216b+ 36c− 397 · 6 + 438 = 0 and thus that

6b+ c = −18.

If Adi was lying, then Ron and Leo were telling the truth, so that 5b + c = 12 and
6b+c = −18. This implies that (b, c) = (−30, 162). But since (−30)2−4 ·162 = 252,
so Adi was also telling the truth, a contradiction.

Hence Adi was telling the truth. If Ron was lying and Leo was telling the truth,
then b2 − 4c = 252 and 6b + c = −18, giving (b, c) = (6,−54). If Leo was instead
lying and Ron was telling the truth, then instead b2 − 4c = 252 and 5b + c = 12,
giving (b, c) = (10,−38). Hence the structure for P can be restored to either

P (x) = 2x4 + 6x3 − 54x2 − 397x+ 438

or
P (x) = 2x4 + 10x3 − 38x2 − 397x+ 438.

In either case we may compute that P (−4) = 1290 .

6. Let a, b, c, and d be positive real numbers with (a+ c)(b+ d) = 1. Prove that

a3

b+ c+ d
+

b3

a+ c+ d
+

c3

a+ b+ d
+

d3

a+ b+ c
≥ 1

3
.

SOLUTION. (Source: 1990 ISL) Using Titu’s Lemma, we have that

∑
cyc

a3

b+ c+ d
=
∑
cyc

(a2)2

a(b+ c+ d)
≥

(∑
cyc a

2
)2∑

cyc a(b+ c+ d)
.

By Rearrangement we have
∑

cyc a
2 ≥

∑
cyc ab = 1 and, so

3

(∑
cyc

a2

)2

≥ 3

(∑
cyc

a2

)
≥
∑
cyc

a(b+ c+ d).

This is enough to finish.

We leave a solution using Jensen as an exercise to the energetic reader.
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7. A convex n-gon is contained in a unit square. Prove that there are three distinct
vertices of the n-gon which determine a triangle of area less than 8

n2 .

SOLUTION. (Source: Gabriel Dospinescu) Number the sides of our polygon from
1 to n going counterclockwise, and let ai be the length of the side numbered i. Then

n∑
i=1

(ai + ai+1) = 2

n∑
i=1

ai ≤ 8,

where an+1 = a1, so there exists some ai such that ai + ai+1 ≤ 8
n . Since ai and ai+1

are lengths of adjacent segment of our n-gon, we can assign vertices A, B, and C
such that AB is the segment with length ai and BC is that with length ai+1. Then,
letting θ = ∠ABC, by AM-GM we obtain

[ABC] =
AB ·BC · sin θ

2
≤ AB ·BC

2
≤
(
AB+BC

2

)2
2

=

(
4
n

)2
2

=
8

n2
.

It’s been a great 27 years.
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