
Berkeley Math Circle: Monthly Contest 3 Solutions

1. Solve, in positive real numbers, the equation (xy)2023 = x(y
2023).

SOLUTION. Rewrite the equation as x2023y = xy
2023

. Therefore, if x = 1, then any
real positive y trivially satisfies it. Otherwise, if x ̸= 1, then we take logarithms to
find that y must satisfy y ·2023 = y2023. Dividing both sides by y yields y2022 = 2023,

which means that y = 2022
√
2023 = 2023

1
2022 .

2. Find the number of complex integer solutions to the equation x2 − y2 = 17.

SOLUTION. First we note that x2 − y2 = (x + y)(x − y). Therefore, by setting
m = x+ y and n = x− y, each solution to our equation is equivalent to an ordered
pair (m,n) satisfying mn = 17. Observe that the pairs (m,n) and (x, y) uniquely
biject to each other, as we can solve for x and y, finding that x = m+n

2 and y = m−n
2 .

Now, 17 factors completely as (4+i)(4−i) over the complex integers. This is because
the numbers 4+ i and 4− i are both prime over the complex integers, which follows
from the fact that the norm function |a + bi| =

√
a2 + b2 is multiplicative and that

|4+ i| = |4− i| = 17, which is prime. One can check that the only other factorization
of 17 over the complex integers is the trivial product 1 · 17.
Therefore, up to reordering, all the complex integer factor pairs of 17 are (1, 7),
(4+ i, 4− i), and their unit multiples, which are formed by multiplying one factor by
1, i, −1, or −i and the other by 1, −i, −1, or i, respectively. Each of these 8 distinct
factor pairs satisfies the condition that their sum and difference are each divisible
by 2, with each unordered pair corresponding to two ordered pairs because 17 is not
square.

We thus have exactly 16 ordered pairs (m,n) such that mn = 17, with each ordered
pair corresponding to exactly one solution to our equation by setting x = m+n

2 and

y = m−n
2 . Thus, our answer is 16 .

3. Kelly draws an arrow on a regular (4n+ 2)-gon. She then reflects the (4n+ 2)-gon
about its 4n+ 2 lines of symmetry in some order. Prove that the arrow now points
in a different direction.

SOLUTION. Draw two (2n + 1)-gons, each using every other vertex. The 2n + 1
lines of symmetry that pass through vertices take each (2n + 1)-gon to itself, and
the other 2n + 1 lines of symmetry take each (2n + 1)-gon to the other (2n + 1)-
gon. Applying an odd number of such transformations will therefore result in a
non-identity transformation.
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4. Let [y] denote the function which rounds a real number y to the nearest integer,
with half-integers being rounded up. Prove that for any positive integer x,

∞∑
i=1

x

2i
=

∞∑
i=1

[ x
2i

]
.

SOLUTION. We have
∑∞

i=1
x
2i

=
x
2

1− 1
2

= x, so it suffices to prove that

∞∑
i=1

[ x
2i

]
= x.

Write x uniquely in the form x =
∑n

j=0 ej2
j for some positive integer n, where each

ej ∈ {0, 1}. For each i, it then follows that

[ x
2i

]
=

 n∑
j=0

ej2
j

2i

 =

 n∑
j=0

ej2
j−i

 =

 n∑
j=i−1

ej2
j−i +

i−2∑
j=0

ej2
j−i

 .

Observing that the fractional portion of
∑n

j=i−1 ej2
j−i is always either 0 or 1

2 and

also that
∑i−2

j=0 ej2
j−i ≤

∑i−2
j=0 2

j−i =
∑i−2

j=0 2
−2−j < 1

2 , it follows that

[ x
2i

]
=

 n∑
j=i−1

ej2
j−i +

i−2∑
j=0

ej2
j−i

 =

 n∑
j=i−1

ej2
j−i

 .

Every term in the summation [
∑n

j=i−1 ej2
j−i] is an integer except the first term, so

that [ x
2i

]
=

 n∑
j=i−1

ej2
j−i

 =

n∑
j=i−1

[ej2
j−i].

Hence
∞∑
i=1

[ x
2i

]
=

∞∑
i=1

n∑
j=i−1

[ej2
j−i] =

n∑
j=0

j+1∑
i=1

[ej2
j−i]

after switching the order of summation.

For all j, we have ej ∈ {0, 1}, and thus [ej2
j−i] = ej [2

j−i] so we get

∞∑
i=1

[ x
2i

]
=

n∑
j=0

j+1∑
i=1

[ej2
j−i] =

n∑
j=0

j+1∑
i=1

ej [2
j−i] =

n∑
j=0

ej

(
j+1∑
i=1

[2j−i]

)
.

However,
j+1∑
i=1

[2j−i] =

j−1∑
i=−1

[2i] = 1 +

j−1∑
i=0

2i = 2j ,

yielding
∞∑
i=1

[ x
2i

]
=

n∑
j=0

ej

(
j+1∑
i=1

[2j−i]

)
=

n∑
j=0

ej2
j = x,

as desired.
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5. A deck of cards contains 52 cards labeled 1 through 52 in order from top to bottom.
We may define a riffle shuffle as a process in which the deck is cut into two piles,
and then the two piles are shuffled back together in a way such that the ordering of
cards within each pile is preserved. Find the minimum number of consecutive riffle
shuffles required to reverse the order of cards in the deck completely.

SOLUTION. The answer is 6.

First, we show that it must take at least 6 shuffles to reverse the order of the cards.
Consider the longest ascending subsequence of the cards from top to bottom. After
a riffle shuffle, the length of the longest ascending subsequence can be at minimum
half the length of the longest ascending subsequence before the riffle shuffle, since
at least half of the subsequence will be in one of the piles after the cut, and these
piles remain in top-to-bottom order after the shuffle. However, the deck starts with
a 52-card ascending subsequence, so it must take at least log2(52) > log2(32) = 5
riffle shuffles to get become fully reversed, as the longest ascending subsequence in
the reversed deck has length 1.

Now, we show that the deck can be reversed in 6 shuffles. First, we note that any
valid riffle shuffle on a deck is also a valid riffle shuffle on any subset of cards in that
deck. Therefore, if we can completely reverse the order of cards in a 64-card deck in
6 shuffles, we may also do so in a 52-card deck simply by ignoring the last 12 cards
of the 64-card deck.

We may do this by having each shuffle cut the 64-card deck exactly in half, and then
interlacing the cards such that the top card of the bottom half ends up on top of
the shuffled deck, the second card of the bottom half ends up third in the shuffled
deck, and so on. Equivalently, each shuffle takes the card in the nth position of the
deck to the (2n)th position of the shuffled deck, with indices taken modulo 65. This
implies that the card labeled n will end up in the (64n)th position of the deck after
6 shuffles; however, since 26 = 64 ≡ −1 (mod 65), this is the same as the −nth
position, modulo 65. Thus, each card ends up being n cards from the bottom in the
final deck, where n is its label, corresponding to a completely reversed deck. Thus,
the deck can be completely reversed in 6 riffle shuffles, as desired.

6. Let P be some n-gon inscribed in the unit circle. Prove that there exists vertices A,
B, and C of P such that the area of triangle △ABC is at most 20

n2 .

SOLUTION. Label the vertices of P as X1, X2, · · · , Xn, where the Xi go in clock-
wise order. Let ai be the sum of the lengths of the two sides having Xi as a vertex.
Then a1 + a2 + · · ·+ an is exactly double the perimeter of P , so that

a1 + a2 + · · ·+ an = 2p(P ) ≤ 2(2π) = 4π

as P is inscribed in a unit circle of circumference 2π. Thus, the Pigeonhole Principle
implies that there must exist some ak such that

ak ≤ 4π

n
.
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Let AXk and XkC be the two segments surrounding Xk, so that AXk + XkC ≤
AC = ak ≤ 4π

n . Then the AM-GM Inequality gives

AXk ·XkC ≤
(
AXk +XkC

2

)2

≤
(
2π

n

)2

.

Using the sine triangle area formula, we find that, since sin∠AXkC < 1,

[AXkC] =
AXk ·XkC · sin∠AXkC

2
≤ AXk ·XkC

2
≤ 1

2

(
2π

n

)2

=
2π2

n2
≤ 20

n2
,

so setting B = Xk implies the result.

7. In triangle△ABC, letD, E, and F be points on sidesBC, CA, andAB, respectively,
such that AD ⊥ BC and the cevians AD, BE, and CF concur. Prove that ∠ADF =
∠ADE.

SOLUTION. Let X be the intersection of the lines AB and DE. By the projective
Ceva-Menelaus Theorem, it follows that (XF ;BA) = −1 is a harmonic bundle.
Since ∠BDA = ∠CDA = 90◦, the projective Angle Bisector Theorem then implies
that AD bisects ∠FDE, so that ∠ADF = ∠ADE, as desired.
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