
Berkeley Math Circle: Monthly Contest 2 Solutions

1. Bob has had a bad experience with the laundry machine and now has three black
socks, three blue socks, and three red socks in his sock drawer. He draws three socks
from the drawer, one at a time, without placing any sock that had been drawn back
in the drawer. What is the probability that at least two of these three socks share
the same color?

SOLUTION. The only way that for Bob to not get two socks of the same color is
for all three socks to be of different colors. No matter what sock he draws first, there
is a probability of 9−3

9−1 = 3
4 that the second sock does not share a color with the first,

and, given that the first two socks are of different colors, a probability of 9−3−3
9−2 = 3

7
that the third does not share a color with either of the first two. Therefore, there
is a 3

4 · 3
7 = 9

28 probability that Bob draws three different colors of socks, so the

probability that he draws at least two socks with the same color is 1− 9
28 = 19

28 .

2. Certain positive integers n have the property that, for all positive even numbers m,
the last two digits of mn and the last two digits of m are exactly the same. In fact,
there are exactly two positive integers less than 100 with this property. What are
they?

Note that numbers below 10 are treated as having two digits. For example, the last
two digits of 8 are said to be 08.

SOLUTION. Let n satisfy the given property. Then 2kn ≡ 2k (mod 100), where
2k is any positive two-digit even number, so that 2k(n − 1) ≡ (2k − 2)(n − 1) ≡ 0
(mod 100). Thus 2(n − 1) ≡ 0 (mod 100), which yields that n ≡ 1 (mod 50). The

only possible values for positive n under 100 are thus 1 and 51 , and it is easy to
see that they both exhibit the desired property.

3. Define points A = (0, 0), B = (0, 5), C = (3, 0), and D = (3, 5) on the coordinate
plane. How many circles of radius 1 can be drawn entirely within rectangle ABDC
without overlapping?

SOLUTION.

The answer is 2 . A corresponding construction can be achieved with unit circles
centered at (1, 1) and (1, 3).

Suppose by contradiction that one can fit 3 nonoverlapping unit circles in rectangle
ABDC. Let O1, O2, and O3 be their centers. Then each of the Oi must be at least
1 unit away away from the edge of the rectangle, so they must all lie in the rectangle
A′B′D′C ′ where A′ = (1, 1), B′ = (1, 4), C ′ = (2, 1), and D′ = (2, 4).

Let M and N respective be the midpoints of A′B′ and C ′D′. Then at least two of
the Oi must lie in the interior or on the boundary of either rectangle A′MNC ′ or
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rectangle B′D′NM . Suppose without loss of generality that O1 and O2 lie in or on
rectangle A′MNC ′. But this implies that

O1O2 ≤ A′N =
√
A′M2 +MN2 =

√(
3

2

)2

+ 12 =

√
13

2
< 2,

which means that the unit circles centered at O1 and O2 overlap, a contradiction.

4. A straight line segment of length 1 is given in the plane. Draw a line segment of

length
√√

5− 2 using only a compass and a straightedge.

SOLUTION. Let us say that a positive real number a is constructible if it is possible
to construct a segment of length a under the given setup. Note in particular that if
a and b are constructible numbers, then |a− b| is also constructible. Indeed, one can

• construct line segment XY of length a, and

• construct line segment XZ of length b such that Y and Z lie on the same side
of X.

Then segment Y Z must have length |a− b|.
We also demonstrate that if a is constructible, then

√
a is too. Assuming familiarity

with basic constructions, such as that of a line perpendicular to a segment at a given
point or the midpoint of any given segment, given a segment of length a, one can

• construct line AC of length a+ 1, with point B on AC such that AB = a,

• construct the circle ω of diameter AC by constructing the midpoint M of AC,

• construct the line ℓ perpendicular to AC at B,

• construct point D given by one of the intersections of ω and ℓ.

Then △ABD ∼ △ADC ∼ △DBC, so that BD =
√
AB ·BC =

√
a.

A
B

C

D

ℓ

ω

Using the above results, we have that 5 and 2 are constructible, so
√
5 is constructible

and therefore
√
5−2 is too. It then follows that

√√
5− 2 must be constructible too,

as desired. In fact, applying the above procedures in the appropriate order yields a
concrete method for constructing this length.

As a remark, it turns out that if a and b are constructible, then so are a + b,
a − b, ab, a

b , and
√
a. A result in abstract algebra in fact states that the set of

constructible integers are closed under addition, subtraction, multiplication, division,
and square roots, with no other operations being possible. For instance, lengths such

as
√√

5− 2 and

√
5
41 + 3

√
17 + 4

√
999 as constructible, but 3

√
2 and π are not.
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5. Find all nonzero polynomials P (x) satisfying x3P (P (x3)) = P (x4P (x2)) for all real
numbers x.

SOLUTION. Setting n = degP , the given condition implies that 3n2+3 = 2n2+4n,
which reduces to having either n = 1 or n = 3.

If n = 1, then there exist constants a, b ∈ R, with a ̸= 0, for which P (x) = ax + b.
Plugging in x = 0 yields b = 0, so that P (x) = ax. One can verify that all such
polynomials of this form work, regardless of the nonzero value of a.

If n = 3, then we have constants a, b, c, d ∈ R, with a ̸= 0, such that P (x) =
ax3 + bx2 + cx+ d. Again, putting x = 0 into the given relation implies that d = 0,
so that P (x) = ax3 + bx2 + cx.

Define Q(x) = x3P (P (x3)) = P (x4P (x2)), and observe that if the coefficient of xm

is nonzero in Q, then we must have 3 | m. In particular, since

Q(X) = P (x4P (x2)) = P (ax10 + bx8 + cx6)

= a(ax10 + bx8 + cx6)3 + b(ax10 + bx8 + cx6)2 + c(ax10 + bx8 + cx6),

the coefficient of the x10 term in Q is ac, implying that c = 0 and therefore that

Q(x) = a(ax10 + bx8)3 + b(ax10 + bx8)2.

In turn, the coefficient of the x16 term in Q is b3, implying that b = 0. Hence
P (x) = ax3, and one can also verify that all nonzero values of a produce a valid
polynomial P .

The solution set for P is therefore {ax, ax3 : a ∈ R \ {0}} .

6. A multiset is an unordered set where an element of the set can appear multiple
times. We call a multiset of integers, all strictly greater than 1, a division partition
of x if the elements of the multiset multiply to x. For any positive integer n, let
f(n) be the number of distinct division partitions of n. For instance, the multiset
{2, 2, 2, 3, 30} is a division partition of 720, and one can check that f(100) = 9. Show
that f(1010) + f(405) + f(2505) < 2.519.

SOLUTION.

For nonnegative integers x and y, let p(x, y) be the number of division partitions of
2x5y, and let p′(x, y) be the number of division partitions of 2x5y that are disjoint
from the set {2, 5}. If either min{x, y} < 0, we write p(x, y) = p′(x, y) = 0.

One may verify that, as long as 2x−a5y−a is an integer greater than 1, the number
of division partitions of 2x5y that contain a copies of 2 and b copies of 5 is simply
p(x− a, y− b) by bijecting the two corresponding sets of division partitions. Hence,
making the appropriate inclusions and exclusions, as long as max{x, y} ≥ 1, the
number of division partitions of 2x5y containing at least one of 2 or 5 is then p(x−
1, y) + p(x, y − 1)− p(x− 1, y − 1). This value is also equal to p(x, y)− p′(x, y), so
we find that, for all nonnegative x and y with max{x, y} ≥ 1, we have

p(x, y) = p(x− 1, y) + p(x, y − 1)− p(x− 1, y − 1) + p′(x, y).
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Now, assume that x+ y ≥ 5. Note that each division partition of 2x5y that does not
include the number 2 or 5 is either exactly {2x5y} or contains a minimal element
2x−j5y−k with 2 ≤ (x−j)+(y−k) ≤ x+y

2 < x+y−2, so that 3 ≤ j+k ≤ x+y−2. Let
S(x, y) be the set containing all integer pairs (j, k) such that 0 ≤ j ≤ x, 0 ≤ k ≤ y,
and 3 ≤ j+k ≤ x+y−2. Since p′(j, k) is an upper bound for the number of division
partitions with lowest element 2x−j5x−k, it follows that

p′(x, y)− 1 ≤
∑

(j,k)∈S(x,y)

p′(j, k)

=
∑

(j,k)∈S(x,y)

(p(j, k) + p(j − 1, k − 1)− p(j, k − 1)− p(j − 1, k))

= p(x, y − 2) + p(x− 1, y − 1) + p(x− 2, y)

− p(x− 1, y − 2)− p(x− 2, y − 1)

+ p(0, 1) + p(1, 0)− p(2, 0)− p(1, 1)− p(0, 2).

where the middle line follows from our previous result on p′(x, y), as j + k ≥ 3
and thus max{j, k} ≥ 1 for all (j, k) ∈ S(x, y), and the final line follows from
telescoping sums, since any other terms are canceled out. Manual computation
yields p(0, 1) + p(1, 0)− p(2, 0)− p(1, 1)− p(0, 2) = 1 + 1− 2− 2− 2 = −4. Thus

p′(x, y) ≤ p(x, y−2)+p(x−1, y−1)+p(x−2, y)−p(x−1, y−2)−p(x−2, y−1)−3.

Since x+ y ≥ 5, it follows that

p(x, y) = p(x− 1, y) + p(x, y − 1)− p(x− 1, y − 1) + p′(x, y)

≤ p(x− 1, y) + p(x, y − 1) + p(x, y − 2) + p(x− 2, y)

− p(x− 1, y − 2)− p(x− 2, y − 1)− 3.

Define the function s(n) =
∑i=n

i=0 p(i, n − i) for all positive integers n. We prove
by induction that the function r(n) = 2.5n − s(n) is positive and monotonically
increasing.

For the base case, we manually compute s(2) = 6, s(3) = 14, and s(4) = 33. One
can check that this works, and that r(2) = 2.52 − s(2) > 0.

For the inductive step, let n ≥ 5. Then

s(n) =

i=n∑
i=0

p(i, n− i)

<
i=n∑
i=0

(p(i− 1, n− i) + p(i, n− i− 1) + p(i, n− i− 2) + p(i− 2, n− i)

− p(i− 1, n− i− 2)− p(i− 2, n− i− 1))

= 2s(n− 1) + 2s(n− 2)− 2s(n− 3),

where the second line follows from the recursive bound on p(x, y) as derived above,
dropping the −3 term.Then

r(n) > 2.5n + 2(−2.5n−1 + r(n− 1)− 2.5n−2 + r(n− 2) + 2.5n−3 − r(n− 3))

= 2.5n−3(2.53 − 2 · 2.52 − 2 · 2.5 + 2) + r(n− 1) + (r(n− 2)− r(n− 3))

≥ 2.5n−3(0.125) + r(n− 1),
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where the last line follows from the inductive hypothesis. Thus r(n) > r(n − 1) as
desired.

We use the above to show that p(5, 15) + p(10, 10) + p(15, 5) < 2.519. In particular,
our previous bound on p(x, y) gives

p(5, 15) < p(4, 15) + p(5, 14) + p(5, 13) + p(3, 15)− p(4, 13)− p(3, 14)

< p(3, 16) + p(4, 15) + p(5, 14) + p(6, 13)

and similarly we have

p(10, 10) < p(8, 11) + p(9, 10) + p(10, 9) + p(11, 8)

and
p(15, 5) < p(13, 6) + p(14, 5) + p(15, 4) + p(16, 3).

Summing the above bounds, we find that

p(5, 15) + p(10, 10) + p(15, 5) <

16∑
i=3

p(i, 16− i) < s(19) < 2.519

as r(19) > 0, so we are done.

7. Prove that there exist two real numbers a, b > 1 such that there are infinitely many
pairs of positive integers m,n such that 0 < am − bn < 1.

SOLUTION. Let b = 2. We make a = 2x for a value of x that we inductively
construct that will take on the form

x = 1 +
N∑
i=1

10−ci ,

where c1, c2, c3, . . . is an increasing sequence of positive integers and N is arbitrarily
large. We aim for a10

k
= 210

kx to always be at most 1 more than a power of two
whenever 10kx has a 1 in its units place. This can be achieved by working out the
decimal representation of x from left to right, each time adding sufficiently many
zeros before the next one, as 10kx can get arbitrarily close to an integer by doing
so. Letting x be the limit of this process gives a working pair (a, b).
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