
Berkeley Math Circle: Monthly Contest 1 Solutions

1. How many positive integer factors of 1010 are not factors of 810? For example, 1, 2,
3, 4, 6, and 12 are all positive integer factors of 12, but 7 and 9 are not. Note that
both 1 and 1010 count as valid factors of 1010.

SOLUTION. The prime factorizations for 1010 and 810 are respectively 210510

and 230. Hence, the factors of 1010 are of the form 2i5j , where 0 ≤ i ≤ 10 and
0 ≤ j ≤ 10, while the factors of 810 are of the form 2k, where 0 ≤ k ≤ 30. The
factors of 1010 that are not factors of 810 must be of the form 2i5j , where 0 ≤ i ≤ 10
and 0 < j ≤ 10, yielding 11 possibilities for i and 10 possibilities for j. As a result,
there are 11 · 10 = 110 options for (i, j), with each possible pair (i, j) giving exactly
one factor of 1010 satisfying the given conditions since all positive integers can be
uniquely factorized into primes. The answer is therefore 110 .

2. Four distinct points A, B, C, and D lie on a plane. Can it be that the distances
AB, AC, AD, BC, BD, and CD, in some order, are

(a) 1, 1, 1, 1, 1, 2?

(b) 1, 2, 3, 4, 5, 6?

SOLUTION.

(a) The answer is no . Indeed, three of the four points must form an equilateral
triangle of side length 1. Let these be A, B, and C, without loss of generality.
The distances between D, and two other points, say A and B, must then also be
1. In particular, both △ABC and △ABD are equilateral triangles, with C and
D on the opposite sides of line AB. But this implies that CD =

√
3 /∈ {1, 2},

a contradiction.

(b) The answer is yes . For instance, impose a coordinate system on the plane,

and set A = (0, 0), B = (1, 0), C = (4, 0), and D = (6, 0), so that AB = 1,
CD = 2, BC = 3, AC = 4, BD = 5, and AD = 6, as desired.

3. A castle has infinitely many rooms labeled 1, 2, 3, . . . , which are divided into some
number of halls. It is known that room n is on the same hall as rooms 3n + 1 and
n+ 81 for every n. At most how many halls can this castle have?

SOLUTION. Let us say that two rooms are connected if they are located on the
same hall. For every n, we observe that

• room n connects to room 3(3(3(3n+ 1) + 1) + 1) + 1 = 81n+ 40,

• room 81n+ 40 connects to room (81n+ 40) + 81 = 81(n+ 1) + 40, and that

• room 81(n+1)+40 = 3(3(3(3(n+1)+1)+1)+1)+1 connects to room n+1.

In particular, it follows that rooms n and n+1 are connected for all n, so the castle
has exactly 1 hall.
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4. Which is bigger, A = 1100 + 2100 + · · ·+ 99100, or B = 100100?

SOLUTION. Observe that for 0 < n ≤ 99, we have(
100− n

100

)100

=
(
1− n

100

)100
<

(
e−

n
100

)100
= e−n.

Thus,

A

B
< e−1 + e−2 + · · ·+ e−99 <

1

2
+

1

4
+ · · ·+ 1

299
= 1− 1

299
< 1,

so B is bigger.

5. There are 100 bags of money, numbered from 1 to 100. The bag with number n
contains $n for all n. Then, 100 people are asked one by one which bag they would
like to get money from, and can pick based on the responses of everyone who came
before. Once an answer has been collected from everyone, each bag will be split
equally among the people who picked it. If they are all playing optimally so as to
maximize their individual profit, how many bags will not be picked?

SOLUTION. If there were some bag m which a participant could switch to after
the game finished to increase their profit, if they instead picked m on their turn,
each future player would have strictly less incentive to pick m, and at least as much
incentive to pick every bag other than m. Thus by the end of the process, no
participant would be better off if they were granted the ability to switch answers.

We claim that the final state will be that all bags numbered 34 to 67 will be picked
once, and bags 68 to 100 will be picked twice. Otherwise, some bag n would have
been picked by more than ⌊ n

34⌋ people, while some other bag m would have been
picked by less than ⌊ n

34⌋ people. But then someone who picked n should have picked
m instead so as to earn at least $34, as they ended up with less than that. Thus the
answer is 33 .

6. Let C(p) be an annual calendar for year p. Two calendars for years p and q are said
to be identical if every date on both calendars falls on the same day of the week, and
we denote this as C(p) = C(q). For example, C(2021) and C(2027) are identical,
because January 1 on both calendars falls on a Friday, and both years are non-leap
years. Call the smallest positive integer N for which C(p) = C(p+N) for all p the
cicada period of the calendar system C.

(a) Is the Julian calendar system CJ periodic? If so, what is its cicada period? In
the Julian calendar, a year is a leap year if and only if it is divisible by four.

(b) Repeat the above part for the Gregorian calendar system CG. It features a
more elaborate and accurate definition of leap years, in which p is a leap year
if and only if either p is divisible by four but not by 100, or that p is divisible
by 400. For example, the years 1700, 1800, and 1900 are not leap years, but
the years 1600 and 2000 are.
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SOLUTION.

(a) Observe that there are two reasons why the calendars of certain years are non-
identical. First, note that the number of days in a year, which is either 365 or
366, is not divisible by seven. In particular, the January 1st of different years
will fall on the seven different days of the week, giving seven different flavors
of calendars. Hence, the cicada period of the calendar system C ′ that ignores
leap years would be 7.

However, leap years complicate the picture, as even if the January 1st of two
different years p and q fall on the same day of the week, the March 1st of those
years might not. For example, observe that CJ(2021) = CJ(2027), as January
1 on each calendars falls on a Friday, and both are non-leap years. However,
we also have that CJ(2022) ̸= CJ(2028), as 2021 is the first year after the leap
year 2020, while 2027 is the third year after the leap year 2024.

The Julian calendar CJ defines the leap year in a way that quadruples the
period of the calendar sequence. In particular, any two years p and q satisfying
CJ(p) = CJ(q) start new periods if and only if they are in the same positions
within their four-year cycles, so that p ≡ q (mod 4), in addition to having
p ≡ q (mod 7). This implies that CJ(p) = CJ(q) if and only if p ≡ q (mod 28).
Hence, the cicada period of CJ is 28 .

(b) Now we consider the Gregorian calendar system CG. There are three factors
determining the period of the sequence, the first two of which are the seven-day
week and the four-year cycle of most leap years, which are the same as in (a).
The third factor is due to the disruptions of the four-year cycle for leap years,
which exhibit a period of 400 years. Hence, years p and q satisfy CG(p) = CG(q)
iff p ≡ q (mod 4), p ≡ q (mod 7), and p ≡ q (mod 400), which equivalently
becomes p ≡ q (mod 2800). As a result, the cicada period of CG is 2800 .

7. Let a, b, c be positive real numbers such that a+ b+ c = 3
2 . Show that

a

a(2a2 + 1) + b+ c
+

b

b(2b2 + 1) + c+ a
+

c

c(2c2 + 1) + a+ b
≤ 6

7
.

SOLUTION. One finds that x
4x3+3

≤ 8x+3
49 for all positive real x as

(8x+ 3)(4x3 + 3)− 49x = (2x− 1)2(8x2 + 11x+ 9) ≥ 0.

Hence, letting
∑

cyc f(a, b, c) denote the sum f(a, b, c) + f(b, c, a) + f(c, a, b) for any

function f : R3 → R, we obtain that∑
cyc

a

a(2a2 + 1) + b+ c
=

∑
cyc

2a

4a3 + 3
≤ 2

49

∑
cyc

(8a+ 3) =
6

7
,

as desired.

As a remark, to see why the linearization x
4x3+3

≤ 8x+3
49 was used, try graphing both

the function f(x) = x
4x3+3

and the line y = 8x+3
49 on a calculator, and see how they

are related.
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