1. Each of Alice, Bob, and Carol is either a consistent truth-teller or a consistent liar.

Alice states: “At least one of Bob or Carol is a truth-teller.” Bob states: “Alice and Carol are both truth-tellers.” Carol states: “If Alice is a truth-teller, so too is Bob.” Must they all be truth-tellers?

SOLUTION. Yes. If Carol were a liar, Alice would have to be a truth-teller while Bob would have to be a liar. However, Bob would then be telling the truth, a contradiction.

Thus Carol is telling the truth. Alice’s statement is then true as well, and thus Bob’s statement is also true. Hence, all logicians must be telling the truth.

2. Let P be a polynomial with integer coefficients. Let S be the set of integers n for which $P(n)/n$ is an integer. Show that S contains either finitely many integers, or all but finitely many integers.

SOLUTION. Let c be the constant coefficient of P, so that $P(x)$ is of the form $Q(x)x + c$. If $n|P(n)$, we then have $n|(Q(n)n + c)$, or $n|c$. S is thus the set of divisors of c. If it is not finite, c must then be 0, and S is the set of all nonzero integers, as desired.

3. If $a, b,$ and c are positive real numbers with $2a + 4b + 8c = 16$, what is the largest possible value of abc?

SOLUTION. By AM-GM,

$$\frac{16}{3} = \frac{2a + 4b + 8c}{3} \geq \sqrt[3]{(2a) \cdot (4b) \cdot (8c)} = 4\sqrt[3]{abc}.$$

Rearranging, we get

$$\sqrt[3]{abc} \leq \frac{4}{3} \iff abc \leq \frac{64}{27}.$$

This maximum is indeed attainable if we set $2a = 4b = 8c$, since that is the equality case of AM-GM, which means $2a = 4b = 8c = \frac{16}{3}$, so $a = \frac{8}{3}, b = \frac{4}{3}, c = \frac{2}{3}$. We conclude that the maximum is indeed $\frac{64}{27}$.

4. Let P be a 2023-sided polygon. All but one side has length 1. What is the maximum possible area of P?

SOLUTION. First, we claim P must be convex to maximize its area. If not, let A and B be consecutive vertices on the perimeter of its convex hull that aren’t
consecutive vertices of P. Reflecting the path between A and B over line AB must increase the area of P as the new shape strictly contains P.

Thus we assume P is convex. Let ℓ be the line containing the side with length not equal to 1. Let P' be the reflection of P over ℓ. By convexity, P and P' do not overlap, so the union of P and P' is a polygon, specifically an equilateral 4044-gon with sides of length 1.

The area of an equilateral polygon is maximized when it is regular, so this union has maximum area that of a regular 4044-gon, which is $1011 \cot \pi/4044$. Thus, the answer is half of this, i.e.

$$\frac{1011}{2} \cdot \cot \frac{\pi}{4044}.$$

5. Suppose you have only an unmarked straightedge (no compass), and you are given a line segment AB with midpoint O and a point P not on line AB.

(a) Construct a line through P parallel to AB.

(b) If you are also given the circle with center O and radius OA and P does not lie on the circle, construct a line through P perpendicular to AB.

SOLUTION.

(a) Extend line AP to some point Q on the opposite side of P from A. Let R be the intersection of lines QO and PB, and let S be the intersection of lines AR and QB, as shown below. We claim that PS is parallel to AB.

![Diagram](image)

By Ceva’s theorem,

$$\frac{QP}{PA} \cdot \frac{AO}{OB} \cdot \frac{BS}{SQ} = 1.$$

It follows that

$$\frac{QP}{PA} = \frac{QS}{QB},$$

which means $\triangle QPS \sim \triangle QAB$, therefore $\angle QPS = \angle QAB$ and so $PS \parallel AB$.

(b) Let PA and PB meet the circle again at points Q and R, respectively, and let S be the intersection of AR and BQ.

2
Then \(\angle AQB = \angle ARB = 90^\circ \) since both angles are inscribed in a semicircle, so

\(S \) is the orthocenter of \(\triangle ABP \), which means \(PS \) is the desired perpendicular.

6. Let \(A \) be a set of size 2023. Find the maximum number of pairs of elements \(x, y \in A \) so that \(x - y \) is a power of \(e \).

SOLUTION.

Let \(a_n \) be the maximum possible number of such pairs for a set of size \(n \). Let \(s_2(n) \) be the number of ones in \(n \)’s binary representation. Let \(S(n) = \sum_{k=0}^{n-1} s_2(k) \). We show that \(a_n = S(n) \).

For the construction, we can take the binary representations of all numbers from 0 to \(n - 1 \), and interpret them as numbers “base \(e \).” Every \(x \) corresponding to some integer \(0 \leq k < n \) then has \(s_2(k) \) working values of \(y \), corresponding to all ways to replace a 1 with a 0 in \(k \)’s binary representation.

For optimality, we use strong induction. The base case of \(n = 1 \) holds as \(a_1 = 0 = s_2(0) \).

Now assume \(n > 1 \). If \(A \) has no working pairs \(x, y \), we are done. Otherwise, let \(t \) be an integer so that there is at least one pair \(x, y \in A \) so that \(x - y = e^t \).

Let \(G \) be the graph of such pairs in \(A \). If \(G \) is not connected, we can increase the number of edges of \(G \) by shifting the vertices of one component of \(G \) to create at least one edge to another component. Thus we can assume that all elements of \(A \) are sums of powers of \(e \). Let \(F \) for an element \(z \in A \), let \(c_z \) be the coefficient of \(e^t \) in the representation of \(A \) as a sum.

Let \(X \) be the set of \(z \) so that \(c_z \geq c_x \) and let \(Y \) be the set of \(z \) so that \(c_z \leq c_y \). Note that \(X \sqcup Y = A \). By strong induction, there are at most \(a_{|X|} \) working pairs in \(X \), and at most \(a_{|Y|} \) pairs in \(Y \). By definition of \(X \) and \(Y \), any pair between them can only have one possible difference, namely \(e^t \). Thus, there are at most \(\min(|X|, |Y|) \) pairs between them.

Thus, we have the recurrence \(a_n \leq \max_{x+y=n} (a_X + a_Y) + \min(X,Y) \). It thus suffices to show that if \(Y \geq X \), \(S(X + Y) - S(Y) \geq S(X) + X \), which expands to
\[\sum_{k=0}^{X-1} s_2(k) \geq \sum_{k=0}^{X-1} (1 + s_2(k)) \]. An exercise to the interested reader is to show this by strong induction on \(X \).

Now it remains to evaluate \(S(2023) \). By linearity of expectation, \(S(2048) \) is equal to \(2048 \cdot 11/2 \). For every number from \(2032 = 2048 - 16 \) to \(2048 \), 7 digits must be 1 and the remaining four each have a half chance of being 1, giving \(S(2048) - S(2032) = 16 \cdot (7 + 4/2) \). Similarly \(S(2032) - S(2024) = 8 \cdot (7 + 3/2) \), \(S(2024) - S(2023) \) is just the number of ones in \(2023 = 11111100111_2 \) is 9. Thus the answer is

\[2048 \cdot 11/2 - 16 \cdot (7 + 4/2) - 8 \cdot (7 + 3/2) - 9 = 11043. \]

7. Show that for sufficiently large primes \(p \), there is an Eulerian circuit on the complete graph with \(p \) vertices that does not contain any cycles of length at most 2023.

SOLUTION. Take a generator \(g \) (mod \(p \)) so that \(g \) is not equivalent to anything the form \(-a/b\) for integers \(a, b \leq 2023 \). For big enough primes, such a \(g \) must exist as there are at most a constant number of such fractions.

Now number the vertices with the residues mod \(p \). For any residue \(r \) (mod \(p \)), consider the sequence of vertices \(P_r \) formed by the multiples of \(r \), starting from \(r \) and ending at \(pr \equiv 0 \) (mod \(p \)). We claim that the concatenation of \(P_1, P_g, P_{g^2}, \ldots \) works.

Clearly no \(P_r \) contains a cycle. Thus, if a cycle were to exist, it would have to be formed by the end of one \(P \) and the start of another. In other words, we would have \(cg^{i+1} \equiv (p-d)g^i \) (mod \(p \)) for \(c + d \leq 2023 \). However, this is impossible by choice of \(g \).