
Berkeley Math Circle: Monthly Contest 4 Solutions

1. Prove that
√
n + 1 +

√
n is irrational for every positive integer n.

Solution. Assume for contradiction that it was rational, and let q denote its value.
Squaring, we find that

q2 = (n + 1) + 2
√
n ·
√
n + 1 + n

so
q2 − (2n + 1)

2
=
√

n(n + 1).

The left-hand side is also rational, so we conclude the quantity n(n + 1) is the
square of a rational number. Actually, since it is an integer, it follows that n(n + 1)
must be a perfect square (the square of an integer). However, n2 < n(n + 1) <
(n + 1)2, so n(n + 1) lies strictly between two consecutive perfect squares, which is
a contradiction.

2. Suppose a sequence s1, s2, . . . , of positive integers satisfies sn+2 = sn+1 + sn for
all positive integers n (but not necessarily s1 = s2 = 1). Prove that there exists an
integer r such that sn − r is not divisible by 8 for any integer n.

Solution. We start by observing that the “classic” Fibonacci sequence goes 112350552710
modulo 8 (repeating forever with period 12), and hence takes on only 6 distinct val-
ues mod 8 (the values 4 and 6 are omitted). So the statement is true there.

Now let s1 = a and s2 = b. If this sequence never hits a multiple of 8, we are done
(with r = 0). Otherwise, the sequence has a passage that goes 0, c, c, which implies
that mod 8 we have a sequence that is a shift of the sequence multiplied by c (since
the Fibonacci sequence contains consecutive terms 0, 1, 1). But this gives at most 6
distinct values mod 8, as needed.

3. For positive real numbers a, b, c satisfying ab + bc + ca = 1, prove that

a

b
+

b

c
+

c

a
≥ a2 + b2 + c2 + 2.

Solution. By Cauchy-Schwarz, we have

(ab + bc + ca)

(
a

b
+

b

c
+

c

a

)
≥ (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

which implies the result immediately.

4. Suppose we have a convex polygon in which all interior angles are integers when
measured in degrees, and the interior angles at every two consecutive vertices differ
by exactly 1◦. If the greatest and least interior angles in the polygon are M◦ and
m◦, what is the maximum possible value of M −m?
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Solution. The answer is 18.

To justify this answer, we will find it helpful to discuss the exterior angles rather
than the interior angles. Consecutive exterior angles must still be integers and must
still differ by 1◦, and the value we seek is equal to the difference between the greatest
and least exterior angles (since (180−m)− (180−M) = M −m). But by working
with the exterior angles, we gain one useful fact: they must add up to 360◦.

We can achieve M −m = 18 by letting the exterior angles in a 36-gon be

1◦, 2◦, 3◦, . . . , 18◦, 19◦, 18◦, . . . , 3◦, 2◦

in that order. The sum is 360◦ (since we have 36 angles whose average is 10◦), and
such a polygon clearly exists (we can construct a convex polygon with prescribed ex-
terior angles a1, . . . , an by letting the vertices be (1, a1+· · ·+ak) in polar coordinates
for all 1 ≤ k ≤ n).

Now we show that we cannot achieve M − m > 18. We argue by contradiction.
Suppose M − m > 18. Then M − m ≥ 19 and M ≤ 179, so m ≤ 160, and the
greatest exterior angle is at least 180◦ − 160◦ = 20◦. An exterior angle k vertices
away from the greatest exterior angle must be at least (180 −m − k)◦. Two facts
follow: first, there must be a vertex at least 19 vertices away from the vertex with
the greatest exterior angle, and so there are at least 38 vertices; second, the exterior
angles in the polygon add up to at least

1◦ + 2◦ + 3◦ + · · ·+ 19◦ + 20◦ + 19◦ + · · ·+ 3◦ + 2◦,

which is 399◦. This is a contradiction.

Therefore, the maximum possible value of M −m is 18.

5. Given a quadrilateral ABCD extend AD and BC to meet at E and AB and DC to
meet at F . Draw the circumcircles of triangle ABE, ADF , DCE, and BCF . Prove
that all four of these circles pass through a single point.

Solution. Let circumcircles of BCF and DCE intersect at point M . We find
∠DMF . As ∠DMC = ∠DEC, and ∠MCF = 180 − ∠CBF , we have ∠DMF =
180−(∠CBF−∠DEC) = 180−∠EAB, so ADMF are concyclic. Similarly, ABME
are concyclic.

6. Determine, with proof, whether or not there exist distinct positive integers a1, a2,
. . . , an such that

1

a1
+

1

a2
+ · · ·+ 1

an
= 2019.

Solution. Yes, the decomposition exists.

Recall that the harmonic series diverges. We first take the largest partial sum of the
harmonic series that is smaller than 2019, subtract it from 2019 to get a “remainder”
r. We then use the greedy algorithm to pick the rest of the unit fractions: pick the
largest integer n with 1/n ≤ r, and replace r with r− 1/n. It is not hard to see the
integers chosen at each step increase.
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The main observation is that as we whittle away at the remainder r, the numerator
of the remainder decreases at every step. Therefore this process must eventually
terminate, and it can only terminate when r = 0, as needed.

7. A simple graph G on 2020 vertices has its edges colored red and green. It turns out
that any monochromatic cycle has even length. Given this information, what is the
maximum number of edges G could have?

Solution. Note that G has no K5; indeed, it’s well-known that the only triangle-free
coloring of the edges of K5 consists of two monochromatic 5-cycles. Therefore, the
number of edges of G is at most

(
4
2

)
· 5052 = 1530150 by Turán’s theorem.

To show this occurs, we split the graph into four equally sized components A, B,
C, D. We color red all edges between A and B, or C and D. We color green all
edges between A and C, A and D, B and C, and B and D. This indeed has the
claimed number of edges, and the subgraphs formed by each color are bipartite, so
this solves the problem.
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