
Berkeley Math Circle: Monthly Contest 8 Solutions

1. Find an example of a triangle ABC with integer side lengths such that if M is the
midpoint of BC and D is the foot of the altitude from A to BC, then AD and AM
have integer lengths too.

Solution. One example is to take a right triangle with AB = 30, AC = 40, BC = 50.
Since the triangle is right, it follows that AM = 1

2BC = 25 (as the midpoint M of
BC is the circumcenter). Moreover, as the triangle has are 1

2(30)(40) = 600, the
altitude AD satisfies 1

2AD ·BC = 600, so AD = 24.

2. Find all pairs (m,n) of integers which satisfy the equation m2 +m = n2 − 2n.

Solution. The answers are the four pairs (0, 0), (0, 2), (−1, 0) and (−1, 2). These
four plainly work, so we prove they are the only ones.

Multiplying both sides by 4, we get 4n2 − 8n = 4m2 + 4m which rearranges to

4n2 − 8n+ 4 = (4m2 + 4m+ 1) + 3 =⇒ (2n− 2)2 − (2m+ 1)2 = 3.

The only squares which differ by 3 are 22 = 4 and 12 = 1 (because if x2 − y2 = 3
for x, y > 0, then 3 = (x − y)(x + y), hence x − y = 1 and x + y = 3). Hence we
must have 2n − 2 = ±2 and 2m + 1 = ±1. So n ∈ {0, 2} and m ∈ {0,−1}, as we
claimed.

3. Show that the numbers from 1 to 99 can be partitioned into two sets A and B with
equal sum, and which satisfy |A| = |B|+ 1 (i.e. A has one more element than B).

Solution. One possible construction is:

A = {1, 2} ∪ {4, 7, 8, 11, 12, 15, 16, 19, . . . , 96, 99}
B = {3} ∪ {5, 6, 9, 10, 13, 14, 17, 18, . . . , 97, 98} .

Since 4 + 7 = 5 + 6, 8 + 11 = 9 + 10, and so on, as well as 1 + 2 = 3, this fulfills both
conditions.

4. Let s(n) denote the sum of the digits of a positive integer n. For example, s(2019) =
2 + 0 + 1 + 9 = 12. Find the 4-digit number n such which minimizes n

s(n) . (Leading

zeros are not permitted.)

Solution. If the number is n = abcd = 1000a+ 100b+ 10c+ d, we seek to minimize

r =
1000a+ 100b+ 10c+ d

a+ b+ c+ d
= 1 +

999a+ 99b+ 9c

a+ b+ c+ d
.

From this expression, we see that setting d = 9 is optimal, in the sense that if d 6= 9
then replacing d with 9 will decrease the value of r.
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Then, we write

r =
1000a+ 100b+ 10c+ d

a+ b+ c+ d
= 10 +

990a+ 90b− 9 · 9
a+ b+ c+ 9

.

Since the numerator is still necessarily positive, by the same logic, replacing c = 9
will decrease r.

Next, we write

r =
1000a+ 100b+ 10c+ d

a+ b+ c+ d
= 1000 +

−900b− 990 · 9− 999 · 9
a+ b+ 9 + 9

.

As the numerator is now necessarily negative, this sum is minimized when a is as
small as possible, hence take a = 1.

Finally, we write

r =
1000a+ 100b+ 10c+ d

a+ b+ c+ d
= 100 +

900 · 1− 90 · 9− 99 · 9
1 + b+ 9 + 9

.

As the numerator is still negative, by the same logic, replacing b = 0 will decrease r.

In conclusion, the best possible value of n must be n = 1099.

5. Suppose 4951 distinct points in the plane are given such that no four points are
collinear. Show that it is possible to select 100 of the points for which no three
points are collinear.

Solution. This is an example of a direct greedy algorithm: we will simply grab points
until we are stuck.

Consider a maximal set S of the points as described (meaning no more additional
points can be added), and suppose |S| = n. Then the 4951 − n other points must
each lie on a line determined by two points in S, meaning

4951− n ≤
(
n

2

)
=⇒ n+

(
n

2

)
≥ 4951.

This requires n ≥ 100.

6. For which integers n ≥ 3 does there exist a convex equiangular n-gon with rational
side lengths which is not regular?

Solution. For any composite n.

First we prove prime n = p are not okay. Letting a0, . . . , ap−1 be side lengths and
ζ a primitive pth root of unity, so that

0 =

p−1∑
i=0

aiζ
i.

But the minimal polynomial of ζ is the cyclotomic polynomial Xp−1 + · · · + 1. So
a0 = a1 = · · · = ap−1 follows.

If n is composite, let n = pk for k ≥ 2, p prime. Let θ = 2π · n−2
n be the “correct”

interior angle. Construct a convex polygon A, say A0A1 . . . Ak, such that
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• ∠A1 = · · · = ∠Ak−1 = θ,

• A0A1 = 2, and

• AiAi+1 = 1 for i = 1, 2, . . . , k − 1.

Then on the sides of a regular p-gon (or a line segment if p = 2), one can erect copies
of A. That produces the desired construction.

7. Three distinct circles Ω1, Ω2, Ω3 cut three common chords concurrent at X. Consider
two distinct circles Γ1, Γ2 which are internally tangent to all Ωi. Prove that X lies
on the line joining the centers of Γ1 and Γ2.

Solution. We prove that X is the exsimilicenter of the two circles. Let the chords
be A1A2, B1B2, C1C2. Then negative inversion at X with power

XA1 ·XA2 = XB1 ·XB2 = XC1 ·XC2

fixes Ω1, hence Ω2 and Ω3.

Hence this inversion swaps swaps Γ1 with Γ2. But if a negative inversion sends one
circle to another then it is their exsimilicenter, as desired.
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