
Berkeley Math Circle: Monthly Contest 7 Solutions

1. The numbers 1 through 7 are written on a blackboard. Each minute, two numbers
are erased and their sum is written instead. Find all possible values for the final
number left on the board.

Solution. This number must be 28 no matter what order the numbers are erased.
To see this, note that the sum of all the numbers on the board can never change.
Since the initial sum is

1 + 2 + · · ·+ 7 = 28,

this must also be the final sum and thus the final number left on the board.

2. Show that for any positive integer n, the numbers 3n+2 and 4n+3 have no common
factors greater than 1.

Solution. Note that any common factor of the two numbers must also divide

3(4n+ 3)− 4(3n+ 2) = (12 + 9)− (12 + 8) = 1,

thus the only common divisor is 1.

3. A partition of a positive integer n is a way of writing n as an unordered sum of not
necessarily distinct positive integer parts. Show that the number of partitions of n
with all odd parts equals the number of partitions with all distinct parts.

Solution. We construct a bijection as follows: given a partition with all distinct
parts, divide each even part into two equal parts, and repeat this until only odd
parts are remaining. We can reverse this process by starting with a partition into all
odd parts and repeatedly combining any two equal parts until all remaining parts
are distinct. These operations are inverses, so this is indeed a bijection, and so the
two sets of partitions have the same size.

4. We have 2009 prime numbers p1 < p2 < p3 < · · · < p2009 such that p21+p22+· · ·+p22009
is a perfect square. Prove that p1 divides p22009 − p22008.

Solution. Note that p2i ≡ 1 (mod 3) whenever pi 6= 3. We thus claim that 3 is one
of the prime numbers. If not, the sum is 2009 ≡ 2 (mod 3), contradiction.

If p1 = 2 there is nothing to prove. Otherwise, if p1 = 3, then the last comment
finishes.

5. Two numbers are relatively prime if their only common divisor is 1. For a positive
integer n, let φ(n) be the number of positive integers less than or equal to n and
relatively prime to n. Write d | n if d is a divisor of n. Find∑

d|n

φ(d).
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In other words, compute the sum of φ(d) across all divisors of n.

Solution. We claim that
∑

d|n φ(n) = n. To see this, consider the fractions

1

n
,

2

n
, . . . ,

n− 1

n
,
n

n
,

and write them all in simplest form. There are n fractions total, and for each d|n,
exactly d of them will have denominator d. The desired sum follows.

6. Define the function s : Z2 → Z by

s(n, k) =

{
1 n ≤ k
−1 n > k.

Prove that if integers x1, . . . , x100 satisfy x2i = 1 for each i, then

100∏
n=1

(
100∑
k=1

s(n, k)xk

)
= 0.

Solution. The is a consequence of the so-called Discrete Intermediate Value Theorem.
Define

Sn =
1

2

100∑
k=1

s(n, k)xk

for n = 0, 1, 2, . . . , 100, and each is an integer. Observe that

|Sn+1 − Sn| = 1.

for any n = 0, 1, 2, . . . , 99. On the other hand S100 = −S0. If S0 = S100 = 0 then
the conclusion is clear. Otherwise, there must be some intermediate index k with
Sk = 0, finishing the problem.

7. Let Ω be a fixed circle and BC a fixed chord of that circle which is not a diameter.
A variable diameter AD of Ω, with A on minor arc B̂C, is chosen. Line BD meets
line AC at E, while line CD meets line AB at F . Points P and Q are the reflections
of D over B and C.

(a) Prove that points A, P , F , E, Q lie on a circle, say Γ.

(b) The tangents to Γ at E and F meet at P . Prove that line AP passes through a
fixed point as A varies.

Solution. For (a), we observe first that D is the orthocenter of 4AEF . Hence the
nine-point circle of 4AEF passes through B, C and the midpoints of AD, FD,
ED. Thus Γ is the image of this nine-point circle under a homothety at D of ratio
2.

For (b), we claim that AP bisects BC, which implies the result. Indeed, AP is an
A-symmedian of 4AEF and so it is isogonal to the A-median of 4AEF . On the
other hand 4ABC and 4AEF are similar and oppositely oriented. So AP becomes
the A-median of 4ABC, which is what we wanted to prove.

2


