
Berkeley Math Circle: Monthly Contest 6 Solutions

1. Ten fair coins are flipped. Given that there are at least nine heads, what is the
probability that all the coins show heads?

Solution. The answer is 1
11 . Among the 210 = 1024 sequences of heads and tails,

note that

• There is only 1 which is all heads, and

• There are 10 sequences which have exactly one tails.

So there are 11 possible sequences with at least nine heads, only one of which is all
heads. Hence the answer is 1

11 .

2. Is there a positive integer n for which n(n+ 1) is a perfect square?

Solution. The answer is no. In fact, we note the number above is sandwiched between
two consecutive perfect squares:

n2 < n(n+ 1) < n2 + 2n+ 1 = (n+ 1)2.

So it cannot itself be a perfect square.

3. Prove that for any positive integer n, we have

n∏
k=1

lcm
(

1, 2, . . . ,
⌊n
k

⌋)
= n!.

Solution. We show that the exponents of p coincide for any prime p. Actually, we’ll
prove the stronger claim that for any prime power q, the number of terms on each
side divisible by q is exactly the same. By the fundamental theorem of arithmetic,
that will imply the desired equality.

Clearly, the number of terms on the right-hand side which are divisible by q is bn/qc.
As for the left-hand side, the number of lcm’s on the right which are divisible by q is
given by the number of k for which

⌊
n
k

⌋
≥ q, which is exactly k = 1, . . . , bn/qc.

4. Let ABC be a triangle and let P be a point inside it satisfying ∠ABP = ∠PCA. Let
Q be the reflection of P across the midpoint of BC. Prove that ∠BAP = ∠CAQ.

Solution. Construct parallelogram APBR, so that segments AR, BP , QC are con-
gruent and parallel. Then ARQC is a parallelogram as well. We contend now that
ARBQ is cyclic. Indeed,

∠ARQ = ∠ACQ

= ∠ACP + ∠PCQ

= ∠QBP + ∠PBA

= ∠QBA.
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Finally
∠BAP = ∠ABR = ∠AQR = ∠QAC.

5. Find the smallest prime p > 100 for which there exists an integer a > 1 such that p
divides a89−1

a−1 .

Solution. The answer is p = 179. To see this works, take a = 4; by Fermat’s little
theorem, 489 − 1 = 2178 − 1 is divisible by 179.

Now suppose a89 ≡ 1 (mod p). We consider two cases:

• If a ≡ 1 (mod p), then

0 ≡ 1 + a+ · · ·+ a88 ≡ 89 (mod p)

which forces p = 89.

• Otherwise, since 89 is prime, it follows a has order 89 modulo p. So 89 | p− 1.
The smallest prime which obeys this is p = 179.

6. Convex quadrilateral ABCD with BC = CD is inscribed in circle Ω; the diagonals of
ABCD meet at X. Suppose AD < AB, the circumcircle of triangle BCX intersects

segment AB at a point Y 6= B, and ray
−−→
CY meets Ω again at a point Z 6= C. Prove

that ray
−−→
DY bisects angle ZDB.

Solution. This is mostly just angle chasing. In this case Y and Z lie between A
and B, on the respective segment/arc. We’ll prove Y is the incenter of 4ZDB; it

will follow that ray
−−→
DY indeed internally bisects ∠ZDB. It suffices to prove the

following two facts:

• BY is the internal angle bisector of ∠DBZ. This is true in general; it doesn’t
require CB = CD. It’s part of the spiral similarity configuration centered
at B : Y X → ZA and B : ZY → AX, due to Y Z ∩ AX = C and B =
(CY X) ∩ (CZA). More explicitly, this follows from the angle chase

∠DBA = ∠XBY = ∠XCY = ∠ACZ = ∠ABZ.

• ZY is the internal angle bisector of ∠BZD, since CB = CD. Indeed (more
explicitly), arcs BC and CD are equal, so ∠BZC = ∠CZD, i.e. Y Z bisects
∠BZD.

7. Prove that there are infinitely many positive integers n for which n2 + 1 has no
repeated prime factors (that is, n2 + 1 is squarefree).

Solution. By Fermat’s Christmas theorem, the only primes which may divide n2 + 1
other than 2 are those which are 1 (mod 4), and moreover 22 - n2 + 1 for any n.

Consider primes p ≡ 1 (mod 4). Observe that for any x, we have

#{n ≤ x | n2 + 1 ≡ 0 (mod p2)} ≤ 2

p2
x+ 2
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since there are at most two solutions mod p2 to n2 ≡ −1 (mod p2). Summing over
all primes p ≡ 1 (mod 4) now implies the result, since

∑
p≡1 (mod 4)

2

p2
< 2

(
1

42
+

1

82
+ . . .

)
=
π2

6
· 1

8
< 1.
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