
Berkeley Math Circle: Monthly Contest 5 Solutions

1. How many ways are there to color the vertices of an equilateral triangle red, green, or
blue, where colorings that can be obtained from each other by rotation or reflection
are considered the same?

Solution. We use casework. If the vertices are all the same color, there are 3 distinct
colorings, one for each color. If two are one color and one is a third color, there are
3 ways to choose the first color and 2 to choose the second, giving 3 · 2 = 6. If they
are all different colors, there is only one coloring up to rotation and reflection. This
gives a total of 3 + 6 + 1 = 10.

2. Let
{
n
k

}
be the number of ways to partition n objects into k nonempty subsets. For

example,
{
4
2

}
= 7 since the four objects A, B, C, D can be partitioned in exactly

seven ways: {A,BCD}, {B,CDA}, {C,DAB}, {D,ABC}, {AB,CD}, {AC,BD},
{AD,BC}.
Prove that {

n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

Solution. Divide the
{
n
k

}
partitions into two cases: either 1 is alone in its subset,

or it is not. If 1 is alone, the remaining n − 1 objects must be divided into k − 1
nonempty subsets, and {1} will be the kth subset. If 1 is not alone, the remaining
objects must be partitioned into k susbets, and there are then k ways to choose
which subset 1 is in.

3. Show that every positive integer n can be uniquely written in the form

n =
k∑

i=0

di · 2i = d0 + 2d1 + . . . 2kdk

for some positive integer k, where each di either 1 or 2.

Solution. Start with the usual binary representation of n. If it is all 1’s, we are done;
otherwise, we can repeatedly apply the transformations 10 7→ 02 (since 2i = 2 · 2i−1)
and 20 7→ 12 (since 2 · 2i = 1 · 2i + 2 · 2i−1) until the resulting string contains only
1’s and 2’s. This process must terminate, since the number of non-leading 0’s starts
finite and is strictly decreasing. Further, we can reverse these transformations to get
back to the original binary number, so since binary representations are unique, this
representation must also be unique.

4. A group of prisoners play the following game: each is given a red or black hat, and
they stand in a line such that each can see the hats of everyone in front of him, but
not his own or those of anyone behind him. Starting from the end of the line, each
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in turn must guess his hat color, and they will win the game and all be freed if at
most one of them guess incorrectly.

They are allowed to discuss a strategy beforehand, and they can hear the previous
guesses, but no other communication is allowed during the game. Show that they
can always win.

Solution. The prisoner at the end of the line counts the number of red hats he sees in
front of him. If this number is even, he says “red,” and if it is odd, he says “black.”
The next prisoner now counts the number of red hats in front of him, and based on
its parity can determine the color of his own hat. Continuing in this manner, each
prisoner can use the responses of the previous prisoners to determine the color of
his own hat, and at most the first prisoner will be wrong. Thus, they will always be
able to win the game.

5. Let ABC be an equilateral triangle. Points L, P , and Q lie on the segments AB,
AC, and BC, respectively, and are such that PCQL is a parallelogram. Let M be
the midpoint of AB. The circle with center M passing through C intersects the circle
with diameter CL again at T . Prove that lines AQ, BP , and LT are concurrent.

Solution. Let K be the reflection of L across M . Let X = AQ∩BP . Then it suffices
to show that lines XL and CK are parallel, since M lies on the perpendicular bisector
of CT , and ∠CTL = 90◦.

Note triangles PAL and BQL are equilateral too. We claim that XL passes through
point D, the reflection of C across AB. This will certainly imply the conclusion.

Note that PXLA and QXBL are cyclic, since 4PLB ∼= 4ALQ provides the nec-
essary angles. Now, line XL is the radical axis, and D has equal power to both
the circumcircles of PAL and QBL, as DA and DB are congruent tangents. This
completes the proof.

6. Suppose 4951 points in the plane are given such that no four points are collinear.
Show that it is possible to select 100 of the points for which no three points are
collinear.

Solution. This is an example of a direct greedy algorithm: we will simply grab points
until we are stuck.

Consider a maximal set S of the points as described (meaning no more additional
points must be added), and suppose |S| = n. Then the 4951− n other points must
each lie on a line determined by two points in S, meaning

4951− n ≤
(
n

2

)
=⇒ n +

(
n

2

)
≥ 4951.

This requires n ≥ 100.

7. For positive real numbers a, b, c prove that

1 + bc

a
+

1 + ca

b
+

1 + ab

c
>
√
a2 + 2 +

√
b2 + 2 +

√
c2 + 2.

2



Solution. We observe that

1

a
+

1

2
a

(
b

c
+

c

b

)
≥ 1

a
+

1

2
a · 2

√
b

c
· c
b

= a +
1

a
=
√

a2 + 2 + a−2

>
√
a2 + 2

with the first inequality by AM-GM. Cyclically summing concludes the proof.
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