
Berkeley Math Circle: Monthly Contest 4 Solutions

1. When the number
N = 11 × 22 × 33 × · · · × 99

is written as a decimal number, how many zeros does it end in?

Solution. The number N ends with five zeros. Indeed, 105 divides N since 44×55 =
800,000 divides N . But 106 does not divide N , since the only terms in the product
which are divisible by 5 are 55, and hence 56 does not divide N . So the answer is
5.

2. A square and an equilateral triangle have the property that the area of each is the
perimeter of the other. What is the area of the square?

Solution. Assuming the square has side length x, it has area x2, so the equilateral
triangle has side length x2/3. The area of the equilateral triangle is then given in
two ways by

4x =
√

3/4 ·
(
x2

3

)2

.

Solving gives x3 = 144√
3

= 48
√

3. Then x6 = 482 · 3 and x2 =
3
√

482 · 3 =
3
√

2833 =

12 3
√

4.

3. Find all the ways which one can assign an integer to each vertex of a 100-gon subject
to the following condition: among any three consecutive numbers written down, one
of the numbers is the sum of the other two.

Solution. The answer is that all the numbers must be zero. (Clearly, this works.)

We now prove this is the only solution. Call the numbers x1, x2, . . . , x100. Then
the sum x1 + x2 + x3 must be even, since it is either 2x1, 2x2, or 2x3. Similarly,
x2 + x3 + x4 must be even.

In this way, x1 and x4 have the same parity. By the same reasoning, x4 and x7 have
the same parity, and so on — the numbers xk and xk+3 have the same parity. Since
3 doesn’t divide 100, that means all the numbers have the same parity. Clearly then
all the numbers are even (rather than all odd).

We may now employ infinite descent: if (x1/2, . . . , x100/2) is a working assignment,
then so is (x1/2, x2/2, . . . , x100/2), and then so is (x1/4, x2/4, . . . , x100/4). Such a
process cannot go on indefinitely unless xk = 0 for all k, completing the proof.

4. Give an example of a strictly increasing function f : R → [0, 1] with the property
that

f(x+ y) ≤ f(x) + f(y)

for any real numbers x and y.
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Solution. We claim that

f(x) =
1

1 + e−x

works fine. This function is strictly increasing by definition, so all that’s left to do
is check the inequality

1

1 + e−(x+y)
≤ 1

1 + e−x
+

1

1 + e−y
.

Letting a = e−x and b = e−y it’s the same as to check

1

1 + a
+

1

1 + b
≥ 1

1 + ab

where a, b > 0. But

1

1 + a
+

1

1 + b
− 1

1 + ab
=

(2 + a+ b)(1 + ab)− (1 + a)(1 + b)

(1 + a)(1 + b)(1 + ab)

=
1 + ab+ ab(a+ b)

(1 + a)(1 + b)(1 + ab)

> 0.

5. Louis moves around on the lattice points according to the following rules: From point
(x, y) he may move to any of the points (y, x), (3x,−4y), (−2x, 5y), (x + 1, y + 6)
and (x− 7, y). Show that if he starts at (0, 1) he can never get to (0, 0).

Solution. Call a point (x, y) stable if x + y is not divisible by 7. The key is to
observe that starting from a stable point, one may only reach other stable points.
For example, 3x− 4y ≡ 3(x+ y) (mod 7), hence if (x, y) is stable then (3x,−4y) is
as well.

Consequently, starting from the stable point (1, 0) it’s impossible to reach the un-
stable point (0, 0).

6. A sequence a1, a2, . . . of positive integers satisfies a1 = 1 and

an+1 = 2an + an

for n ≥ 1. Prove that a1, a2, . . . , a243 leave distinct remainders when divided by
243.

Solution. I’ll prove by induction on k ≥ 1 that any 3k consecutive values of an
produce distinct residues modulo 3k. The base case k = 1 is easily checked (an is
always odd, hence an cycles 1, 0, 2 mod 3).

For the inductive step, assume it’s true up to k. Since 2∗ (mod 3k+1) cycles every
2 · 3k, and ak is always odd, it follows that

an+3k − an = 2an + 2an+1 + · · ·+ 2an+3k−1 (mod 3k+1)

≡ 21 + 23 + · · ·+ 22·3
k−1 (mod 3k+1)

= 2 · 43
k − 1

4− 1
.
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Hence

an+3k − an ≡ C (mod 3k+1) where C = 2 · 43
k − 1

4− 1

noting that C does not depend on n. Exponent lifting gives ν3(C) = k (meaning 3k

divides C but not 3k+1) hence an, an+3k , an+2·3k differ mod 3k+1 for all n, and the
inductive hypothesis now solves the problem.

7. Let ABC be a triangle with incenter I and circumcenter O for which BC < AB <
AC. Let D and E be points in the interiors of sides AB and AC, respectively, of a
triangle ABC, such that DB = BC = CE. Prove that DE ⊥ IO.

Solution. It is enough to show that DI2 − DO2 = EI2 − EO2. But if we let R
denote the circumradius, then by power of a point we have R2 −DO2 = AD ·DB,
and R2 − EO2 = AE · EC. Thus it suffices to prove

DI2 +AD ·DB = EI2 +AE · EC ⇐⇒ DI2 − EI2 = AE · EC −AD ·DB.

In the usual notation a = BC, b = CA, c = AB, the right-hand side is

AE · EC −AD ·DB = (b− a)a− (c− a)a = a(b− c).

Now let the foot from I to BC be K; it’s well-known that BK = 1
2(a − b + c) and

CK = 1
2(a+ b− c). So

DI2 − EI2 = CI2 −BI2

= (IK2 + CK2)− (IK2 +BK2)

= (CK −BK)(CK +BK)

= a(c− b).

This gives the desired equality, so we’re done.
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