
Berkeley Math Circle: Monthly Contest 3 Solutions

1. Find all ordered pairs (x, y) of positive integers such that xy − x− y = 11.

Solution. Adding 1 to both sides and factoring the left side gives

(x− 1)(y − 1) = 12.

Using the factors of 12, we find that the possible ordered pairs are

(2, 13), (3, 7), (4, 5), (5, 4), (7, 3), (13, 2).

2. How many numbers are there from 1 to 100 that are neither a multiple of 7 nor
contain the digit 7?

Solution. Of the 100 numbers, b100/7c = 14 are multiples of 7, and 92 = 81 do not
contain the digit 7 (since there are 9 choices for each of the 2 digits, including 100
and excluding 0), so 100− 81 = 19 do. There are 3 numbers that have both (7, 70,
and 77). By the principle of inclusion/exclusion, this gives a total of

100− 14− 19 + 3 = 70.

3. Show that for any five points in the plane, no three of which are collinear, some four
form a convex quadrilateral.

Solution. Suppose not. Then three of the points must form a triangle with the other
two points inside, WLOG A,B,C, and the other two points D and E.

A

B

C

D

E

Then the line DE cuts the triangle into two pieces, so one of the pieces contains two
of the points A,B,C, WLOG A and B. Then the quadrilateral ABED is convex.
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4. In the game Sprouts, there are initially n spots drawn on a plane, and on each move
two spots are connected with an edge and a new spot is drawn on this edge. No two
edges can cross, and no spot may have more than 3 edges coming from it. An edge
may be drawn from a spot to itself. The game ends when no more moves can be
made.

a) Show that the game must end in at most 3n− 1 moves.

b) Show that the game will last at least 2n moves.

Solution. a) We can say that each spot initially has three lives, and that on each
move, one life is lost, since the two ends of the new edge each lose a life, and
the new spot on this edge has one life. Thus, after 3n− 1 moves, there is only
one life remaining, and so after 3n− 1 moves, there is only one life remaining,
while an edge requires two lives, so no more moves can be made.

b) Say a spot is alive if it has at least one life left, and dead otherwise. If the
game ends after m moves, there will be 3n −m lives remaining, and no sport
can have two lives left, or an edge could be drawn from that spot to itself, so
there are 3n−m live spots left.

Also, no two live spots can be adjacent, or another edge could be drawn between
them, so each live spot must be connected to two dead spots. Further, each
dead spot can be connected to at most one live spot, or else another edge could
be drawn, so there are at least twice as many dead spots as live spots. But the
total number of spots is n+m, since one spot is added each move. Putting this
together,

3n−m+ 2(3n−m) ≤ n+m =⇒ 8n ≤ 4m =⇒ m ≥ 2n.

5. Let ABCDEFG be a regular heptagon. Let X be the intersection of diagonals BE
and CG, and let Y be the intersection of BD and CE. Prove that A, X, and Y are
collinear.

Solution. Note that by AA,

4CY D ∼ 4AG =⇒ CY

CD
=
AG

GB
.

Also by AA,

4FGB ∼ 4CXE =⇒ GB

GF
=
XE

XC
.

A
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Thus
AG

Y C
=
GB

CD
=
GB

GF
=
EX

XC
=
GX

XC
.

Since ∠AGX = ∠Y CX, we have

4AXG ∼ 4Y XC =⇒ ∠AXG = ∠Y XC,

which implies that A,X, Y are collinear, as desired.

6. Let φ(n) be the number of positive integers less than or equal to n and relatively
prime to n. Evaluate

∞∑
n=1

φ(n)2n

9n − 2n
.

Solution. We rewrite this as a sum geometric series, which we can then expand:

∞∑
n=1

φ(n)2n

9n − 2n
=

∞∑
n=1

φ(n)

(
2
9

)n
1−

(
2
9

)n =
∞∑
n=1

φ(n)
n∑

k=1

(
2

9

)kn

.

Note that we will get a
(
2
9

)n
term once for each divisor of n. Thus we can rearrange

this sum as
∞∑
n=1

(
2

9

)n∑
k|n

φ(n).

Using that
∑

k|n φ(k) = n, this sum becomes

∞∑
n=1

n

(
2

9

)n

=
2
9(

1− 2
9

)2 =
18

49
.

7. Find all pairs of prime numbers (p, q) such that p2 − p− 1 = q3.

Solution. Rearranging and factoring gives

p2 − p = p(p− 1) = q3 + 1 = (q + 1)(q2 − q + 1).

Since p is a prime, either p|q+1 or p|q2−q+1. In the former case, p < q, so p−1 < q.
Since q2 − q + 1|p− 1, this means

q2 − q + 1 < q =⇒ q2 − 2q + 1 = (q − 1)2 < 0,

which is impossible. Thus p|q2− q+ 1, and so q+ 1|p− 1. Let p− 1 = k(q+ 1). Then

q2−q+1 = kp = k(k(q+1)+1) = k2q+(k2+k) =⇒ q2−(k2+1)q−k2−k+1 = 0.

Using the quadratic formula to solve for q gives

q =
k2 + 1±

√
(k2 + 1)2 + 4(k2 + k − 1)

2
.

Since q must be an integer, the discriminant must be a perfect square, so

(k2 + 1)2 + 4(k2 + k − 1) = k4 + 2k2 + 1 + 4k2 + 4k − 4 = k4 + 6k2 + 4k − 3
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is a perfect square. Clearly it is more than (k2 + 1)2. Now,

(k2 + 2)2 = k4 + 4k2 + 4 = k4 + 6k2 + 4k − 3 =⇒ 2k2 + 4k − 7 = 0.

However, this quadratic does not have integer solutions. However,

(k2 + 3)2 = k4 + 6k2 + 9 = k4 + 6k2 + 4k − 3 =⇒ k = 3.

This gives

q =
10±

√
100 + 4 · 11

2
= 11

and p = k(q + 1) + 1 = 37.

But

(k2 +4)2 = k4 +8k4 +16 ≤ k4 +6k2 +4k−3 =⇒ 2k3−4k+19 = 2(k−1)2 +17 ≤ 0,

which is impossible. Thus, we cannot have

k4 + 6k2 + 4k − 3 = (k2 + n)2

for any n ≥ 4, so the only possibility is n = 3. Thus, the only possible solution is
(p, q) = (37, 11), and we can plug this in to find that it does indeed work.
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