
Berkeley Math Circle: Monthly Contest 1 Solutions

1. Do there exist positive irrational numbers x and y such that x+ y and xy are both
rational? If so, give an example; if not, explain why not.

Solution. Such numbers do exist. One example is x = 3−
√

2 and y = 3+
√

2 (which
are irrational due to the famous fact that

√
2 is irrational). Then x + y = 6 and

xy = 7.

2. Let n be an odd positive integer not divisible by 3. Show that n2 − 1 is divisible by
24.

Solution. We will show it is divisible by 8 and 3. Since the least common multiple
of 8 and 3 is 24, this implies the result.

We factor (n− 1)2 = (n− 1)(n+ 1).

To show divisibility by 8, note that n−1 and n+1 are two consecutive even integers.
Among any two consecutive integers one of them must be divisible by 4; the other
one is divisible by 2 by definition, so their product is divisible by 8.

To show divisibility by 3, note that {n− 1, n, n+ 1} form three consecutive integers.
Thus at least one of them is divisible by 3. We assumed n was not divisible by 3, so
it must be either n− 1 or n+ 1, hence their product is divisible by 3 as well.

3. Four cars A, B, C, and D travel at constant speeds on the same road (not necessarily
in the same direction). Car A passed B and C at 8am and 9am, respectively, and
met D at 10am. Car D met B and C at 12pm and 2pm, respectively. Determine at
what time B passed C. (The times given are within a single day.)

Solution. Draw lines A,B,C,D to graph the movement of the four cars, with time
on the x-axis and distance on the y-axis, and let (XY ) be the point where lines X
and Y meet. Then (AC) is the midpoint of the line from (AB) to (AD), and (DB)
is the midpoint of the line from (DA) to (DC). Thus, (BC) is the intersection of
two medians of the triangle with vertices at (AB), (AD), and (DC), so it is the
centroid. But this means the distance from (AC) to (BC) is half the distance from
(BC) to (CD). Since A meets C at 9am and C meets D at 2pm, the time between
these meetings is 5 hours. The meeting of C and B occurs 1/3 of the way from the
first meeting to the second, i.e. 5/3 hours after A meets C, or at 10:40am.

4. A row of fifty coins with integer denominations is given, such that the sum of the
denominations is odd. Alice and Bob alternate taking either coin at the left end of
the row or the right end of the row, with Alice playing first. Prove that Alice can
always ensure she gets more than half the money.

Solution. Color the coins alternatively black and white. Since 50 is even, on Alice’s
turn, the coins at either end of the row are different colors.
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Thus Alice could guarantee getting all of the black coins, she could also guarantee
getting all of the white coins. Since either the sum of the black coins is more the
sum the white coins, or vice-versa (they are not equal since the sum is odd), Alice
can guarantee getting more money than Bob.

5. Let a, b, c be positive real numbers such that abc = 1. Simplify

1

1 + a+ ab
+

1

1 + b+ bc
+

1

1 + c+ ca
.

Solution. We may let a = y/x, b = z/y, c = x/z for some real numbers x, y, z.
Then

1

1 + a+ ab
+

1

1 + b+ bc
+

1

1 + c+ ca
=

1

1 + y/x+ z/x
+

1

1 + z/y + x/y
+

1

1 + x/z + y/z

=
x

x+ y + z
+

y

x+ y + z
+

z

x+ y + z

= 1.

6. Two triangles ABC and XY Z have a common circumcircle. Suppose the nine-point
circle γ of 4ABC passes through the midpoints of XY and XZ. Prove that γ also
passes through the midpoint of Y Z.

Solution. Let R be the circumradius of 4ABC. Note γ has radius R/2 and passes
through the midpoints M and N of XY and XZ. There are only two circles with
these properties: one of them is 4XMN (by homothety) and the other is the nine-
point circle of 4XY Z. Since γ was the nine-point circle of 4ABC, it must be the
latter.

7. Let G be a simple graph with k connected components, which have a1, . . . , ak
vertices, respectively. Determine the number of ways to add k − 1 edges to G to
form a connected graph, in terms of the numbers ai.

Solution. The answer is
a1 . . . ak(a1 + · · ·+ ak)k−2

which generalizes Cayley’s formula!

We will show that

f(a1, . . . , ak) = k!(a1 . . . ak)(a1 + · · ·+ ak)k−2

counts the number of ways to pick k − 1 edges, in order. The proof is by induction
on k, with k = 1 being clear. If we add an edge between the first and second
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connected components, there are a1a2 ways to do so, and the number of ways to
finish is f(a1 + a2, a3 . . . , ak). So

f(a1, . . . , ak) =
∑

1≤i<j≤k

aiajf(ai + aj , a1, . . . , ak︸ ︷︷ ︸
missing ai and aj

)

= (k − 1)!
∑

1≤i<j≤k

(ai + aj)(a1 . . . ak)(a1 + · · ·+ ak)k−2

= (k − 1)!(a1 . . . ak)(a1 + · · ·+ ak)k−2
∑

1≤i<j≤k

(ai + aj)

= k!(a1 . . . ak)(a1 + · · ·+ ak)k−1.
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