
Berkeley Math Circle: Monthly Contest 6 Solutions

1. Prove that
n(n + 1)(2n + 1)

is always divisible by 6, for n a positive integer.

Solution. The number is even, because either n or n + 1 is even.

Now we show it is always divisible by three. Assume for contradiction that it isn’t.
Then neither n nor n + 1 is divisible by three, so n+ 2 must be. However, 2n + 1 =
2(n + 2)− 3 is then also a multiple of three, which is a contradiction.

In fact, one can also notice the result from the fact that

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

2. Oscar draws a triangle ABC on a sheet of paper. He finds that the side lengths of
ABC are all powers of 2 (i.e. among 1, 2, 4, 8, . . . ). Prove that Oscar’s triangle is
isosceles.

Solution. Consider a longest side of the triangle, 2a. We claim that another side
must have this length too. Otherwise, suppose for contradiction they are 2b and 2c

where b, c < a Then
2b + 2c < 2a−1 + 2a−1 = 2a

which contradicts the triangle inequality.

Hence there must be a second side of length 2a.

3. Let a, b, c, d be positive integers such that ab = cd. Prove that a + b + c + d is not
a prime number.

Solution. Note that

a(a + b + c + d) = a2 + ac + ad + ab

= a2 + ac + ad + cd

= (a + c)(a + d).

If a + b + c + d was prime it would then have to divide either a + c or a + d, which
is impossible.

4. Prove that there exists an infinite sequence of a1, a2, . . . positive integers such that
the following condition holds: gcd(am, an) = 1 if and only if |m− n| = 1.
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Solution. Enumerate the primes p1, q1, p2, q2, . . . and define

an = pnqn ·

{∏n−2
k=1 pk n even∏n−2
k=1 qk n odd.

This works by construction. The idea is that you just take every pair i < j you want
to not be relatively prime (meaning |i− j| ≥ 2) and throw in a prime. You can’t do
this by using a different prime for every pair (since each ai must be finite) and you
can’t use the same prime for a fixed i, so you do the next best thing and alternate
using even and odd and you’re done.

5. In convex hexagon AXBY CZ, sides AX, BY and CZ are parallel to diagonals BC,
XC and XY , respectively. Prove that 4ABC and 4XY Z have the same area.

Solution. Let [P] denote the area of a polygon P.

The important claim is that if KL ‖MN , then [KLM ] = [KLN ]. This is a simple
consequence of the formula A = 1

2bh.

Then, we find that

[ABC] = [XBC] (since AX ‖ BC)

= [XY C] (since BY ‖ XC)

= [XY Z] (since CZ ‖ XY )

as desired.

6. A bulldozer is touring Pascal’s triangle. It starts at the top of the triangle, at
(
0
0

)
= 1.

Each move, it travels to an adjacent positive integer, but can never return to a spot
it has already visited. Moreover, if it has visited two numbers a > b, it may not
visit a+ b or a− b. Finally, the bulldozer is confined to the first 140 rows of Pascal’s
triangle.

Prove that the bulldozer may visit at least 2017 numbers. (By convention, the nth
row contains the entries

(
n−1
k

)
for k = 0, . . . , n−1, hence the nth row has n entries.)

Solution. The main idea is to visit odd numbers!

We claim inductively that the first 2n rows of Pascal’s triangle satisfy the following
properties:

• The 2nth row contains only odd numbers.

• The first 2n rows contain 3n odd numbers.

• When taken modulo 2, there is 120 degree symmetry

• There is a path starting at any corner to any other corner through only odd
numbers.

Indeed this is clear for n = 1. For the inductive step, let T denote the shape of
the first 2n rows modulo 2. Note that row 2n + 1 contains all even numbers except
the endpoints

(
2n

0

)
=
(
2n

2n

)
= 1. Thus in fact we get two side-by-side copies of the

triangle T , which meet on row 2n+1 and thus have all ones. (Between the two copies
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of T we get an inverted triangle having all entries 0.) From these observations, we
see that all statements in the inductive hypothesis hold.

Thus, we may visit odd numbers from rows 1 to 128. In doing so, we visit 37 = 2187
odd numbers.

7. We wish to place ways exactly 100 dominoes (of size 2×1 or 1×2) without overlapping
on a 20× 20 chessboard so that every 2× 2 square contains at least two uncovered
unit squares which lie in the same row or column. In how many ways can this be
done?

Solution. The answer is
(
20
10

)2
.

Generalizing the problem slightly, the answer is
(
m+n
n

)2
for a 2m×2n rectangle. We

provide a “proof without words” with the following bijection:
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