
Berkeley Math Circle: Monthly Contest 4 Solutions

1. On an 6×6 chessboard, we randomly place counters on three different squares. What
is the probability that no two counters are in the same row or column?

Solution. The number of ways to pick three squares is
(
36
3

)
.

We now count the number of ways to pick three squares with no two in the same
row or column. One can select three distinct rows, in

(
6
3

)
ways, that we will place

the counters in. Afterwards, there are 6 ways to pick the column for the first row, 5
to pick the column in the second row, and 4 for the final row.

So the answer is (
6
3

)
· 6 · 5 · 4(
36
3

) =
20 · 6 · 5 · 4

36 · 35 · 34/6
=

40

119
.

2. Alice picks an odd integer n and writes the fraction

2n+ 2

3n+ 2
.

Show that this fraction is already in lowest terms. (For example, if n = 5 this is the
fraction 12

17 .)

Solution. Let A = 2n+ 2 and B = 3n+ 2. Now notice that

3A− 2B = 3 (2n+ 2) − 3 (3n+ 2) = 2.

So if some integer d ≥ 1 divides both A and B, it also divides 3A− 2B = 2. Hence
d must be 1 or 2.

But since n was odd, the number 3n + 2 is odd, and so we can’t have d = 2. Thus
the only common divisor of A and B is 2, as needed.

3. Let ABC be a triangle. A line is drawn not passing through any vertex of ABC.
Prove that some side of ABC is not cut by the line.

Solution. Consider the two sides of the line `. By pigeonhole principle on the three
vertices of ABC, two of these verctices, say A and B, lie on the same side of `. Then
segment AB does not intersect `..

4. A sequence a1, a2, . . . of positive integers satisfies

an+1 = a3n + 103

for every positive integer n. Prove that the sequence contains at most one perfect
square.
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Solution. It’s easy to check that no two consecutive terms can be perfect squares,
since the only squares which differ by 103 are 512 and 522.

Now, note that squares are 0, 1, or 4 mod 8. After a perfect square appears, the
next term must be −1 or 0 mod 8, and thereafter all terms are −1, −2 modulo 8,
so no more squares.

5. Show that n divides ϕ(an − 1) for any integers a and n, where ϕ is Euler’s totient
function.

Solution. Let N = an − 1. Then gcd(a,N) = 1 and the order of a (mod N) is
exactly equal to n. But aϕ(N) ≡ 1 (mod N) too. Thus n divides ϕ(N).

6. Let a, b, c be pairwise distinct integers. Prove that

a3 + b3 + c3

3
≥ abc+

√
3(ab+ bc+ ca+ 1).

Solution. Let 3k2 − 1 = ab + bc + ca, so we need a3 + b3 + c3 ≥ 3(abc + 3k). Now,
we have

(a− b)2 + (b− c)2 + (c− a)2 ≥ 22 + 12 + 12 = 6.

In particular, we get

(a+ b+ c)2 =
1

2

[
(a− b)2 + (b− c)2 + (c− a)2

]
+ 3(3k2 − 1) ≥ 9k2.

Thus a+ b+ c ≥ 3k. Now, using the factorization of a3 + b3 + c3 − 3abc gives

a3 + b3 + c3 − 3abc ≥ (3k)(
1

2
· 6) = 9k

as desired.

7. Let AXY ZB be a convex pentagon inscribed in a semicircle with diameter AB,
and let K be the foot of the altitude from Y to AB. Let O denote the midpoint
of AB and L the intersection of XZ with Y O. Select a point M on line KL with
MA = MB, and finally, let I be the reflection of O across XZ. Prove that if
quadrilateral XKOZ is cyclic then so is quadrilateral Y OMI.

Solution. Extend the semicircle to a circle Γ. Let line LK meet Γ again at two
points P and Q. Let W be the point on ray OM such that OW · OM = OA · OB.
So points P , Q, W , O are concyclic, say on γ.

Now, L is the radical center of γ, Γ, and the circumcircles of XKOZ, because lines
XZ and PQ are radical axii. So, line Y O is the radical axis of Γ and γ.

Let T denote the intersection of lines XZ and AB. We have that KO · KT =
KA · KB = KP · KQ, so point T also lies on γ. Also, according to TA · TB =
TK · TZ = TK · TO, we deduce that TY is tangent to Γ.

Finally, let S denote the midpoint of YW . By a homothety of ratio 2 at W , we
have that the line passing through S and the midpoint of WT is perpendicular to
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Y O. Moreover, S lies on the perpendicular bisector of line KO. Therefore, S is the
center of the circumcircle of quadrilateral XKOZ.

Finally, the collinearity of Y , S, W implies quadrilateral Y OMI is concyclic, since
one can readily show that OS ·OI = OW ·OM = OY 2, hence ∠OIM = ∠OWS =
∠OWY = ∠OYM .
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