Complex numbers.

Definition. A complex number has the form x + iy where $x, y \in \mathbb{R}$ and i is the *imaginary* unit, which satisfies $i^2 = -1$. The set of all complex numbers is denoted by \mathbb{C} . The real part $\operatorname{Re}(z)$ of z := x + iy is x and its *imaginary* part $\operatorname{Im}(z)$ is y. The complex conjugate \overline{z} of z is x - iy. The modulus of z is $\sqrt{x^2 + y^2}$.

The sum of two complex numbers, $x_1 + iy_1$ and $x_2 + iy_2$ is by definition the complex number $(x_1 + x_2) + i(y_1 + y_2)$ and the product of $x_1 + iy_1$ and $x_2 + iy_2$ is the number $(x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$.

Polar representation of a complex number. Any complex number z can be written in the form $\rho e^{i\phi}$ where ρ is the modulus of z and $\phi \in [0, 2\pi)$ is its *argument*.

Euler's formula. $e^{i\phi} = \cos \phi + i \sin \phi$.

De Moivre's formula. $(\cos \phi + i \sin \phi)^n = \cos n\phi + i \sin n\phi.$

Fundamental theorem of algebra. If $n \ge 1$ and a_0, a_1, \ldots, a_n are complex numbers with $a_n \ne 0$, then there is a complex number z that satisfies the equation

$$a_0 + a_1 z + \dots + a_n z^n = 0.$$

(In fancy terms, the field \mathbb{C} is algebraically closed.)

Examples.

1. Find all $z \in \mathbb{C}$ that satisfy $\operatorname{Re}(z) = \operatorname{Im}(z)$ and

$$|z| + |z + 14| = 28.$$

- 2. Find all fifth roots of unity.
- 3. Find all solutions of the equation $(z-1)^n = z^n$.
- 4. Prove the trigonometric identity

$$\cos^n \theta = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \cos((n-2k)\theta).$$

Hint: recall the *Binomial theorem*:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

5. Prove the Multisection formula: if $f(x) = \sum_k a_k x^k$, then

 $\sum_{k \equiv r \pmod{m}} a_k x^k = \frac{1}{m} \sum_{s=0}^{m-1} \varepsilon^{-rs} f(\varepsilon^s x) \qquad \text{where} \quad \varepsilon \text{ is a primitive } m \text{th root of 1.}$

The latter means that $\varepsilon^m = 1$ but $\varepsilon^j \neq 1$ for $j = 1, \ldots, m-1$.

6. Evaluate

$$\sum_{k \equiv 1 \pmod{3}} \binom{n}{k} \quad \text{and} \quad \sum_{k \equiv 2 \pmod{3}} \binom{n}{k}.$$

7. Prove that the number

$$\sum_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k}$$

is not divisible by 5 for any integer $n \ge 0$.