
Impossibility Results
Berkeley Math Circle

Oct 9, 2024

Lecturer: Avishay Tal

Dominoes on a Mutilated Chessboard.

Is it possible to place 31 dominoes
of size 2x1 to cover all the squares?

Source: Wikipedia

Leaping Frogs Puzzle – Double the Square
4 frogs are placed on the corners of a 1x1 size square: (0,0), (0,1), (1,0), (1,1)

At each point, a frog can leap above another,
landing at the same distance on its other end.

Can we double the square?
i.e., can the frogs reach the corners of a 2x2 size square: (0,0), (0,2), (2,0), (2,2)?

Leaping Frogs Puzzle – Half the Square
4 frogs are placed on the corners of a 1x1 size square: (0,0), (0,1), (1,0), (1,1)

At each point, a frog can leap above another,
landing at the same distance on its other end.

Can we half the square?
i.e., reach the corners of a 0.5x0.5 size square: (0,0), (0,0.5), (0.5,0), (0.5,0.5)?

Connection between the two puzzles?

• Suppose you can double the square, then you can half the square.
• Why?
• Because the sequence of moves is reversible.

• But, we know we can’t half the square, so we can’t double it!

Two principles:
• Invariants –

• Dominoes cover the same number of red and black squares.
• Frogs can get only to integral points - (x,y) for integers x, y.

• Reduction – solving problem A implies solving problem B.
But if problem B is impossible to solve, then so is A.

The Barber Paradox (Russell’s Paradox)
• In an island, some men shave themselves and others don’t.

• A male barber, Tony, wants to shave all men that do not shave
themselves.

• Is it possible?

• Does Tony shave himself?
• If he does, then he shouldn’t.
• If he doesn’t, then he should.

Theory of Computation
What is computation?

Computation is the evolution process of some environment,
by a sequence of “simple, local” steps.

Avi Wigderson, “Mathematics and Computation”

• Bits in a computer.
• Computers in a network.
• Atoms in matter
• Neurons in the brain.
• Proteins in a cell.
• Cells in a tissue.
• Bacteria in a Petri dish.
• Deductions in proof systems.
• Prices in a market.
…

Computability Theory

What can be computed?

Programs -- some examples
def foo(n):
 for i from 2 to n-1:
 if i divides n:
 return False
 return True

What does this function check?

Programs -- some examples
def is_prime(n):
 for i from 2 to n-1:
 if i divides n:
 return False
 return True

What does this function check?

Programs – some examples
x = 1
while x != 101:
 x = x+2

What would the program do?

Programs – some examples
x = 1
while x != 101:
 x = x+3

What would the program do?

Program – some examples
• Is it easy to check if a program halts?
• In some cases, it does.
• Let’s see a more complicated one…

Programs – some examples
def is_prime(n): … (as defined before)

n = 2
While True:
 n = n+2
 Flag = False
 for i from 2 to n-1:
 if (is_prime(i) and is_prime(n-i)):
 Flag = True
 if (Flag==False):
 halt!

Would this program halt?
It would halt if and only if the Goldbach’s conjecture is false!

Goldbach’s conjecture:
Every even natural number greater than 2
is the sum of two prime numbers.

The halting problem
• We view programs both as text (the code of the program) and as

algorithms.
• An input to a program can be the code of another program.
• The Halting Problem:

Given (the code of) a program P and input I, does P halts on I?
• Why not just simulate the program?
• Well, we can do it.

• If it halts, we can answer yes!
• If it doesn’t halt…

The halting problem is undecidable
[Turing] There’s no program that can decide the halting problem.
Proof:
Suppose by contradiction there is a program that decides the halting problem – call it Halt.

Let’s look at another program called Turing.
def Turing(P):
 if Halt(P,P):
 loop forever
 else:
 halt

Does Turing halt on Turing?
• If Turing halts on Turing, then it should loop forever.
• If Turing doesn’t halt on Turing, then it should halt.
In either cases, we reach a contradiction! ➔ Halt cannot exist.

Another way to view the proof - Diagonalization

P1 P2 P3 P4 …
P1 H L H L
P2 L H L H
P3 L H H L
P4 L H H L
…

Turing is the opposite of the diagonal!
• If Pi halts on Pi, Turing loops on Pi

• There’s no program for Turing!
• There’s no program for Halt!

Entry (i,j) – does Pi halt on input Pj?

Computability Theory
• Computability theory studies which problems can be solved by

computers, and which are undecidable.
• Using reductions, we can show that almost all “Program

Checking” problems are undecidable.

Another undecidable problem:
Tiling: Given a collection of tiles as input,
can you tile the infinite plane with these tiles?

Source:Wikipedia

Computational Complexity

What can be computed efficiently?

Splitting a bar of chocolate to squares
How many times you need to cut the bar, to get all 24 1x1 pieces?

Can you do better?

Source: Wikipedia

Addition vs Multiplication
• How much time it take to add two n digit numbers?
• How much time it take to multiply two n digit numbers?

• It seems that multiplication is harder than addition.
Can we prove it?

1534568

x 5714361

1534568

92074080

460370400

6138272000

15345680000

1074197600000

7672840000000

8769075531048

The story of Kolmogorov and Karatsuba
• In 1960, the famous mathematician, Kolmogorov, organized a

seminar, where he stated a conjecture that multiplication cannot
be done in less than 𝑛2 time. The plan was to explore how to prove
this conjecture

• After a week, a student, named Karatsuba, discovered a much
faster algorithm – that takes roughly 𝑛log2 3 ≤ 𝑛1.59 time

• Kolmogorov was very excited about the discovery and terminated
the seminar. He went on to give lectures on it in conferences
around the world.

• Today we know of algorithms taking 𝑛 log 𝑛 time
• Is multiplication harder than addition? We still don’t know

Sorting an Array
Sorting an array is quite useful.
[4,1,7,5,3,10] ➔ [1,3,4,5,7,10]
For example: It allows quick search.
There are several algorithms that sort 𝑛 elements in 𝑛 log 𝑛 time.
Q: Can you do better?

Lower Bound for Sorting
• Suppose x1, …, xn are the items in the array
• Suppose we can only compare items, e.g., is x3<x5? is x2<x7?
• How many comparisons do we need to do in the worst-case?
Theorem: Any comparison-based algorithm for sorting must take
at least ~ 𝑛 log 𝑛 steps in the worst-case.

Proof Idea
View an algorithm as a decision tree

If the depth of tree is 𝑑, how many leaves it can have?
Every permutation must appear in at least one leaf.
➔ 𝑛! ≤ #𝑙𝑒𝑎𝑣𝑒𝑠 ≤ 2𝑑

𝑥1 < 𝑥2 ?

𝑥2 < 𝑥3?

𝑥1 < 𝑥3 ?

𝑥1, 𝑥2, 𝑥3

𝑥1 < 𝑥3?
𝑥1, 𝑥3, 𝑥2

𝑥3, 𝑥1, 𝑥2

𝑥2 < 𝑥3 ?

𝑥2, 𝑥1, 𝑥3

𝑥2, 𝑥3, 𝑥1

𝑥3, 𝑥2, 𝑥1

yes

no

yes

no

yes

no

yes

no

yes

no

P, NP
P: We consider a problem to be efficiently solvable, if there’s an
algorithm solving it in polynomial time: on inputs of length n, the
algorithm runs in at most nc time.

NP: We consider a problem to be efficiently verifiable, if there’s an
algorithm that can check if a solution is valid in polynomial time.

The Million Dollar Question: Does P=NP?

P, NP, NP-Complete
NP-complete: Problems in NP that are the “hardest to solve”.

Examples of NP-complete Problems:
• Coloring a graph in 3 colors.
• Finding a large clique in a social network
• Satisfying multiple constraints (e.g., scheduling)
• Packing
• Solving a system of quadratic equations
• Generalized Sudoko
• Traveling Salesperson

Graph Coloring

Can you color the vertices of this graph with 3 colors so that every edge touches two different
colors?

Graph Coloring

Can you color the vertices of this graph with 3 colors so that every edge touches two different
colors?

Integer Factorization
Given a positive integer 𝑛 find its prime factors.
For example: Given 𝑛 = 15 output 3,5.

We don’t know how to do it quickly for numbers of 1000 digits.

Current technology allows only to factorize numbers with up to 250 digits
and this took 2700 core-years.

Scaling: The current best algorithm runs in time exponential in #digits 1/3

So same method would take

• 600 Billion core years on 500-digits numbers

• 56,000 Billion Billion core years on 1000-digits numbers

• 15 Billion Billion Billion Billion core years on 2000-digits numbers

Reduction between Problems
If we can solve Problem B efficiently,
then we can solve Problem A efficiently.
If we cannot solve A efficiently, then we cannot solve B efficiently:
“𝐴 ≤ 𝐵”

Input x to Problem A Input y to Problem B

Problem B
output of Problem B

reduction

Output
manipulation

output to Problem A

NP-Complete
What does it mean: Problems in NP that are the “hardest to solve”?

A reduces to B, “𝐴 ≤ 𝐵”: If we can solve Problem B efficiently,
then we can solve Problem A efficiently.
If we cannot solve A efficiently, then we cannot solve B efficiently:

Definition: A problem A is NP-complete if:
• A is a problem in NP – we can verify solutions in polynomial time.
• Any problem in NP reduces to A.

• If we can solve A in polynomial time,
then we can solve any other problem in NP in polynomial time.

Summary
• Impossibility puzzles: dominoes on a chessboard, frogs.
• Impossibility by invariants – every allowed configuration has a certain

property that the end goal doesn’t
• Impossibility by reduction – if we can solve B, we can solve A.

If we cannot solve A, we cannot solve B.
• The Barber Paradox
• Computability – what can computers do?
• The Halting Problem is undecidable
• Complexity - what can computers do efficiently? (we don’t know yet)

• P, NP, NP-complete
• NP-complete – one for all and all for one.

(solve one of them, you solved all of them)

	Slide 1: Impossibility Results
	Slide 2: Dominoes on a Mutilated Chessboard.
	Slide 3: Leaping Frogs Puzzle – Double the Square
	Slide 4: Leaping Frogs Puzzle – Half the Square
	Slide 5: Connection between the two puzzles?
	Slide 6: The Barber Paradox (Russell’s Paradox)
	Slide 7: Theory of Computation
	Slide 8
	Slide 9: Programs -- some examples
	Slide 10: Programs -- some examples
	Slide 11: Programs – some examples
	Slide 12: Programs – some examples
	Slide 13: Program – some examples
	Slide 14: Programs – some examples
	Slide 15: The halting problem
	Slide 16: The halting problem is undecidable
	Slide 17: Another way to view the proof - Diagonalization
	Slide 18: Computability Theory
	Slide 19
	Slide 20: Splitting a bar of chocolate to squares
	Slide 21: Addition vs Multiplication
	Slide 22: The story of Kolmogorov and Karatsuba
	Slide 23: Sorting an Array
	Slide 24: Lower Bound for Sorting
	Slide 25: Proof Idea
	Slide 26: P, NP
	Slide 27: P, NP, NP-Complete
	Slide 28: Graph Coloring
	Slide 29: Graph Coloring
	Slide 30: Integer Factorization
	Slide 31: Reduction between Problems
	Slide 32: NP-Complete
	Slide 33: Summary

