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Dominoes on a Mutilated Chessboard.

Is it possible to place 31 dominoes 
of size 2x1 to cover all the squares?

Source: Wikipedia



Leaping Frogs Puzzle – Double the Square
4 frogs are placed on the corners of a 1x1 size square: (0,0), (0,1), (1,0), (1,1)

At each point, a frog can leap above another,
landing at the same distance on its other end.

Can we double the square?
i.e., can the frogs reach the corners of a 2x2 size square: (0,0), (0,2), (2,0), (2,2)?



Leaping Frogs Puzzle – Half the Square
4 frogs are placed on the corners of a 1x1 size square: (0,0), (0,1), (1,0), (1,1)

At each point, a frog can leap above another,
landing at the same distance on its other end.

Can we half the square?
i.e., reach the corners of a 0.5x0.5 size square: (0,0), (0,0.5), (0.5,0), (0.5,0.5)?



Connection between the two puzzles?

• Suppose you can double the square, then you can half the square.
• Why? 
• Because the sequence of moves is reversible.

• But, we know we can’t half the square, so we can’t double it!

Two principles:
• Invariants – 

• Dominoes cover the same number of red and black squares.
• Frogs can get only to integral points - (x,y) for integers x, y.

• Reduction – solving problem A implies solving problem B. 
But if problem B is impossible to solve, then so is A.



The Barber Paradox (Russell’s Paradox)
• In an island, some men shave themselves and others don’t.

• A male barber, Tony, wants to shave all men that do not shave 
themselves.

• Is it possible?

• Does Tony shave himself?
• If he does, then he shouldn’t. 
• If he doesn’t, then he should.



Theory of Computation
What is computation?

Computation is the evolution process of some environment, 
by a sequence of “simple, local” steps.

Avi Wigderson, “Mathematics and Computation”

• Bits in a computer. 
• Computers in a network. 
• Atoms in matter
• Neurons in the brain. 
• Proteins in a cell. 
• Cells in a tissue. 
• Bacteria in a Petri dish. 
• Deductions in proof systems. 
• Prices in a market.
…



Computability Theory

What can be computed?



Programs -- some examples
def foo(n):
 for i from 2 to n-1:
  if i divides n:
   return False
 return True

What does this function check?



Programs -- some examples
def is_prime(n):
 for i from 2 to n-1:
  if i divides n:
   return False
 return True

What does this function check?



Programs – some examples
x = 1
while x != 101:
 x = x+2
 

What would the program do? 



Programs – some examples
x = 1
while x != 101:
 x = x+3
 

What would the program do? 



Program – some examples
• Is it easy to check if a program halts?
• In some cases, it does.
• Let’s see a more complicated one…



Programs – some examples
def is_prime(n): … (as defined before)

n = 2
While True:
 n = n+2
 Flag = False
 for i from 2 to n-1:
  if (is_prime(i)  and  is_prime(n-i)):
   Flag = True
 if (Flag==False):
  halt!
  

Would this program halt?
It would halt if and only if the Goldbach’s conjecture is false! 

Goldbach’s conjecture: 
Every even natural number greater than 2 
is the sum of two prime numbers.



The halting problem
• We view programs both as text (the code of the program) and as 

algorithms.
• An input to a program can be the code of another program.
• The Halting Problem: 

Given (the code of) a program P and input I, does P halts on I?
• Why not just simulate the program?
• Well, we can do it.

• If it halts, we can answer yes!
• If it doesn’t halt…



The halting problem is undecidable
[Turing] There’s no program that can decide the halting problem.
Proof:  
Suppose by contradiction there is a program that decides the halting problem – call it Halt.

Let’s look at another program called Turing.
def Turing(P):
 if Halt(P,P):
  loop forever
 else: 
  halt

Does Turing halt on Turing? 
• If Turing halts on Turing, then it should loop forever.
• If Turing doesn’t halt on Turing, then it should halt.
In either cases, we reach a contradiction! ➔ Halt cannot exist.



Another way to view the proof - Diagonalization

P1 P2 P3 P4 …
P1 H L H L
P2 L H L H
P3 L H H L
P4 L H H L
…

Turing is the opposite of the diagonal!
• If Pi halts on Pi, Turing loops on Pi

• There’s no program for Turing! 
• There’s no program for Halt!

Entry (i,j) – does Pi halt on input Pj?



Computability Theory
• Computability theory studies which problems can be solved by 

computers, and which are undecidable.
• Using reductions, we can show that almost all “Program 

Checking” problems are undecidable.

Another undecidable problem:
Tiling: Given a collection of tiles as input, 
can you tile the infinite plane with these tiles?

Source:Wikipedia



Computational Complexity

What can be computed efficiently?



Splitting a bar of chocolate to squares
How many times you need to cut the bar, to get all 24 1x1 pieces?

Can you do better?

Source: Wikipedia



Addition vs Multiplication
• How much time it take to add two n digit numbers?
• How much time it take to multiply two n digit numbers?

• It seems that multiplication is harder than addition. 
Can we prove it?

1534568

x 5714361

-------------

1534568 

92074080 

460370400 

6138272000 

15345680000 

1074197600000 

7672840000000

-------------

8769075531048



The story of Kolmogorov and Karatsuba
• In 1960, the famous mathematician, Kolmogorov, organized a 

seminar, where he stated a conjecture that multiplication cannot 
be done in less than 𝑛2 time. The plan was to explore how to prove 
this conjecture

• After a week, a student, named Karatsuba, discovered a much 
faster algorithm – that takes roughly 𝑛log2 3 ≤ 𝑛1.59 time

• Kolmogorov was very excited about the discovery and terminated 
the seminar. He went on to give lectures on it in conferences 
around the world.

• Today we know of algorithms taking 𝑛 log 𝑛  time
• Is multiplication harder than addition? We still don’t know



Sorting an Array
Sorting an array is quite useful.
[4,1,7,5,3,10] ➔ [1,3,4,5,7,10]
For example: It allows quick search.
There are several algorithms that sort 𝑛 elements in 𝑛 log 𝑛 time.
Q: Can you do better?



Lower Bound for Sorting
• Suppose x1, …, xn are the items in the array
• Suppose we can only compare items, e.g., is x3<x5? is x2<x7?
• How many comparisons do we need to do in the worst-case?
Theorem: Any comparison-based algorithm for sorting must take  
at least ~ 𝑛 log 𝑛 steps in the worst-case.



Proof Idea
View an algorithm as a decision tree

If the depth of tree is 𝑑, how many leaves it can have?
Every permutation must appear in at least one leaf.
➔ 𝑛! ≤ #𝑙𝑒𝑎𝑣𝑒𝑠 ≤ 2𝑑

𝑥1 < 𝑥2 ?

𝑥2 < 𝑥3?

𝑥1 < 𝑥3 ?

𝑥1, 𝑥2, 𝑥3

𝑥1 < 𝑥3?
𝑥1, 𝑥3, 𝑥2

𝑥3, 𝑥1, 𝑥2

𝑥2 < 𝑥3 ?

𝑥2, 𝑥1, 𝑥3

𝑥2, 𝑥3, 𝑥1

𝑥3, 𝑥2, 𝑥1

yes

no

yes

no

yes

no

yes

no

yes

no



P, NP
P: We consider a problem to be efficiently solvable, if there’s an 
algorithm solving it in polynomial time: on inputs of length n, the 
algorithm runs in at most nc  time.

NP: We consider a problem to be efficiently verifiable, if there’s an 
algorithm that can check if a solution is valid in polynomial time.

The Million Dollar Question:  Does P=NP?



P, NP, NP-Complete
NP-complete: Problems in NP that are the “hardest to solve”.

Examples of NP-complete Problems:
• Coloring a graph in 3 colors.
• Finding a large clique in a social network
• Satisfying multiple constraints (e.g., scheduling)
• Packing
• Solving a system of quadratic equations
• Generalized Sudoko
• Traveling Salesperson



Graph Coloring

Can you color the vertices of this graph with 3 colors so that every edge touches two different 
colors?



Graph Coloring

Can you color the vertices of this graph with 3 colors so that every edge touches two different 
colors?



Integer Factorization
Given a positive integer 𝑛 find its prime factors. 
For example: Given 𝑛 = 15 output 3,5.

We don’t know how to do it quickly for numbers of 1000 digits.

Current technology allows only to factorize numbers with up to 250 digits
and this took 2700 core-years.

Scaling: The current best algorithm runs in time exponential in #digits 1/3

So same method would take

• 600 Billion core years on 500-digits numbers

• 56,000 Billion Billion core years on 1000-digits numbers

• 15 Billion Billion Billion Billion core years on 2000-digits numbers



Reduction between Problems
If we can solve Problem B efficiently, 
then we can solve Problem A efficiently.
If we cannot solve A efficiently, then we cannot solve B efficiently: 
“𝐴 ≤ 𝐵”

Input x to Problem A Input y to Problem B

Problem B
output of Problem B

reduction

Output
manipulation

output to Problem A



NP-Complete
What does it mean: Problems in NP that are the “hardest to solve”?

A reduces to B, “𝐴 ≤ 𝐵”:  If we can solve Problem B efficiently, 
then we can solve Problem A efficiently.
If we cannot solve A efficiently, then we cannot solve B efficiently: 

Definition: A problem A is NP-complete if:
• A is a problem in NP – we can verify solutions in polynomial time.
• Any problem in NP reduces to A. 

• If we can solve A in polynomial time, 
then we can solve any other problem in NP in polynomial time.



Summary
• Impossibility puzzles: dominoes on a chessboard, frogs.
• Impossibility by invariants – every allowed configuration has a certain 

property that the end goal doesn’t
• Impossibility by reduction – if we can solve B, we can solve A.

If we cannot solve A, we cannot solve B.
• The Barber Paradox
• Computability – what can computers do?
• The Halting Problem is undecidable
• Complexity - what can computers do efficiently? (we don’t know yet)

• P, NP, NP-complete
• NP-complete – one for all and all for one. 

(solve one of them, you solved all of them)
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