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Warm up

I have a bunch of socks in a drawer, and there are 7 colors of
socks. I pick socks from the drawer without looking. How many do
I need to grab to guarantee a matching pair?

▶ I need 8 socks. With 7 or less, I could pick one of each color.
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Pigeonhole Principle

If k + 1 pigeons are put into k holes, some hole will have at least
two pigeons.

▶ Pigeons = socks

▶ Holes = colors = 7

▶ To have two pigeons in the same hole (two socks of the same
color), we must have 7 + 1 = 8 pigeons (socks)
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Pigeonhole Principle

If k + 1 pigeons are put into k holes, some hole will have at least
two pigeons.

▶ Proof

Proof technique: Proof by Contradiction

To prove the statement “if A, then B”, assume B is
false and show that you get a logical contradiction.

Assume by contradiction that no hole has more than one
pigeon.

There are k holes, so there are ≤ k pigeons.

But, there are k + 1 pigeons, so this is a contradiction ( ). So,
there is a hole with at least two pigeons.



Example

T/F: The Pigeonhole Principle states that if the socks I have are of
the 7 colors of the rainbow, if I pick 8 socks, at least two socks
that I picked are yellow.

▶ False. At least two socks are of the same color, but they could
be of any color.

T/F: The Pigeonhole Principle states that if I pick 8 socks, exactly
two socks are of the same color.

▶ False. I could have three socks of the same color, or all socks
of the same color.



Example

How many socks do I need to pick to guarantee at least 5 of the
same color?

▶ I need to pick 29 socks. If I pick 28, I might have 4 of each
color.
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Generalized Pigeonhole Principle (version 1)

If (n − 1)k + 1 pigeons are put into k holes, then some hole has at
least n pigeons.



Example

If I pick 50 socks, how many socks of the same color am I
guaranteed to have?

▶ If I divide 50 socks by 7 colors, I could have 7 socks per color
but would have one remaining. So, I am guaranteed at least 8
socks of the same color.

▶ Equivalently, 50
7 rounded up makes 8.
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Generalized Pigeonhole Principle (version 2)

If n pigeons are put into k holes, then some hole has at least ⌈ nk ⌉
pigeons.

▶ Proof

A property of the ceiling function is that ⌈x⌉ < x + 1.

Assume by contradiction that every hole has less than ⌈ nk ⌉
pigeons. Equivalently, the maximum number of pigeons each
hole can have is ⌈ nk ⌉ − 1 pigeons.

We can find the total number of pigeons.

# pigeons ≤
(⌈n

k

⌉
− 1

)
k =

⌈n
k

⌉
· k − k

<
(n
k
+ 1

)
· k − k

= n + k − k

= n



Generalized Pigeonhole Principle

If n pigeons are put into k holes, then some hole has at least ⌈ nk ⌉
pigeons.

▶ Proof

So, the number of pigeons is < n. But, we know that there
are n pigeons, so n < n, which is a contradiction. Thus, some
hole has at least ⌈ nk ⌉.



Example

Suppose n people play rock paper scissors. If everyone plays at
least one round and no pair of players play more than one round,
prove that two players must play the same number of rounds.

▶ Pigeons = people = n

▶ Holes = # of rounds a person can play = 1 to n − 1 = n − 1

▶ By the pigeonhole principle (PHP), some hole has at least
⌈ n
n−1⌉ = 2 pigeons in it. So, at least two people must play the

same number of rounds.
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Example

Prove that an equilateral triangle cannot be completely covered by
two smaller equilateral triangles.

▶ Assume by contradiction that it is possible. Then, all 3
vertices of the equilateral triangle must be covered by the two
smaller triangles.

▶ Pigeons = vertices of the larger equilateral triangle = 3

▶ Holes = smaller triangles = 2

▶ By the PHP, some hole has at least ⌈32⌉ = 2 pigeons in it,
meaning one of the smaller triangles must contain at least 2
vertices of the larger triangle in it.

▶ This is a contradiction since the two vertices are a side length
apart, and the farthest away two points can be in an
equilateral triangle is its side length. The smaller triangles
have a strictly smaller side length than the larger equilateral
triangle, so two vertices cannot lie in one smaller triangle.
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Example

I have an arbitrarily large canvas completely covered in blue and
yellow paint. Prove that there are two points of the same color on
the canvas that are exactly 1 cm apart.

▶ Construct an equilateral triangle of side length 1cm and place
it over the painting.

1 cm

1 cm1 cm

▶ Pigeons = vertices of the triangle = 3

▶ Holes = colors = 2

▶ By the PHP, at least ⌈32⌉ = 2 vertices must be of the same
color. Any two vertices of the equilateral triangle are exactly 1
cm apart.
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Example

I cover the canvas in blue, yellow, and green paint. Prove that
there are two points of the same color on the canvas that are
exactly 1 cm apart.

▶ Does a square work?

1 cm

1 cm

1 cm

1 cm ̸=1
cm

▶ We want to find a different shape.



Example

I cover the canvas in blue, yellow, and green paint. Prove that
there are two points of the same color on the canvas that are
exactly 1 cm apart.

▶ Does a square work?

1 cm

1 cm

1 cm

1 cm ̸=1
cm

▶ We want to find a different shape.



Example

A 1 B

1

C

1

D

1

E

1

1

F
1

1

1

G
1

1

Moser Spindle

▶ Pigeons = vertices = 7

▶ Holes = colors = 3

▶ By the PHP, at least ⌈73⌉ = 3
vertices of the figure have the
same color.

▶ Of any 3 vertices, at least 2 are 1
cm apart.



Example

Suppose a1, a2, . . . , an are integers. Then some “consecutive sum”
ak + ak+1 + ak+2 + · · ·+ ak+m is divisible by n.

▶ Write the consecutive sums:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3
...

sn = a1 + a2 + · · ·+ an

If one is divisible by n, we are done. Otherwise, dividing each
by n leaves some non-zero remainder.
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Example

▶ Notation: a ≡ b mod m means a has remainder b when
divided by m.

▶ Let s1 ≡ r1 mod n, s2 ≡ r2 mod n, . . . , sn ≡ rn mod n.
r1, . . . , rn have values in the set {1, . . . , n − 1}.

▶ Pigeons = possible remainders {r1, . . . , rn}= n

▶ Holes = possible values of remainders = {1, . . . , n − 1} =
n − 1

▶ By the PHP, at least ⌈ n
n−1⌉ = 2 remainders share the same

value. Let these be ri and rj , with j > i .

▶ si and sj have the same remainder when divided by n, so
sj − si = ai+1 + ai+2 + · · ·+ aj is a consecutive sum divisible
by n.



Example

[Sun Tzu’s Theorem] If m and n are relatively prime, and
0 ≤ a < m and 0 ≤ b < n, then x exists such that x ≡ a mod m
and x ≡ b mod n.

▶ Consider the integers a, a+m, a+ 2m, . . . , a+ (n − 1)m.
When divided by m, each has remainder a. We want to show
that one of these has remainder b when divided by n.

▶ Assume by contradiction that none of the integers satisfy this.

a ≡ r0 mod n

a+m ≡ r1 mod n

a+ 2m ≡ r2 mod n

...

a+ (n − 1)m ≡ rn−1 mod n
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Example

▶ No remainder can be b, so the possible remainders are
{0, 1, . . . , b − 1, b + 1, . . . , n − 1}. There are n − 1 possible
remainders, these will be the pigeons.

▶ There are n values of ri , these will be the holes.

▶ By the PHP, at least ⌈ n
n−1⌉ = 2 remainders have the same

value. Let these be ri = rj = r , and WLOG, let j > i .

a+ im = k1n + r a+ jm = k2n + r

Combine the equations.

(a+ jm)− (a+ im) = (k2n + r)− (k1n + r)

m(j − i) = n(k2 − k1)

m and n are relatively prime, so n | (j − i). But j and i are
distinct and from the set {0, 1, . . . , n − 1}, so 0 < j − i < n
and n cannot divide j − i . , so some integer works.



Handouts



I have a bag containing 3 types of chocolate. What is the smallest
number of chocolates I need to pick from the bag to ensure that I
picked 3 of the same flavor?

▶ Pigeons = number of chocolates

▶ Holes = types of chocolate = 3

▶ We want n = 3 of the same type, and k = 3.

(n − 1)k + 1 = 2 · 3 + 1 = 7

▶ I must pick 7 chocolates to ensure 3 of the same flavor.
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There are 39 million people in California. How many people can we
guarantee have the same two-letter initials?

▶ Pigeons = people in California = 39,000,000

▶ Holes = # of two-letter initials = 26 · 26 = 676

▶ By the PHP, at least ⌈39000000676 ⌉ = 57, 693 people share the
same initials.
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Prove that if 101 numbers from 1 to 1000 are chosen, at least 11
of them must have the same ones digit.

▶ Pigeons = numbers chosen = 101

▶ Holes = possible ones digits = {0, 1, . . . , 9} = 10

▶ By the PHP, at least ⌈10110 ⌉ = 11 numbers have the same ones
digit.
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Nine students solved a total of 28 problems in a math olympiad.
Each problem was solved by exactly one student. We know of one
student who solved exactly one problem, two students who solved
exactly two problems, and three students who solved exactly three
problems. Prove that one student must have solved at least 5
problems.

⋆ ⋆
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⋆

▶ 6 students solved 1 + 2 + 2 + 3 + 3 + 3 = 14 questions,
leaving 3 students to solve the remaining 14 problems

▶ Pigeons = problems = 14

▶ Holes = students = 3

▶ By the PHP, some student must have solve at least ⌈143 ⌉ = 5
problems.
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Pick 7 points on the surface of a sphere. Show that at least 5
must lie on the same hemisphere of the sphere.

▶ Pick two points on the sphere, split the sphere into two
hemispheres with a circle passing through those two points.

▶ There are 5 remaining points that must be placed.

▶ Pigeons = points = 5

▶ Holes = hemispheres = 2

▶ By the PHP, at least ⌈52⌉ = 3 points must lie on the same
hemisphere. Add the two original points, this gives 5 points
on the same hemisphere.
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Given any 9 natural numbers (1, 2, 3, . . . ), show that it is possible
to choose 5 whose sum is divisible by 5.

▶ Every natural number has a possible remainder of 0, 1, 2, 3,
or 4 when divided by 5. Split the 9 numbers into sets based
on what their remainders are.

▶ Case 1: all 5 sets have elements. Take one element from each
set, the remainder is 0 + 1 + 2 + 3 + 4 = 10 ≡ 0 mod 5 and
we are done.

▶ Case 2: exactly 4 sets have elements.

▶ Case 3: exactly 3 sets have elements.

▶ Case 4: exactly 2 sets have elements. Pigeons = numbers = 9
and holes = sets = 2, so by the PHP, one set has at least
⌈92⌉ = 5 numbers. Choose 5 numbers from the set and we are
done.

▶ Case 5: one set has all 9 elements. Choose 5 numbers from
that set, and we are done.
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▶ Case 2: exactly 4 sets have elements. By the PHP, some set
has at least ⌈94⌉ = 3 elements in it. Suppose the possible
remainders are a, b, c , d , e. WLOG, suppose there are three
elements in the set for a and none in the set for b. c , d , and
e each have at least one element. Take 2b − a mod 5, the
result will be c , d , or e.

▶ Choose three elements from a, none from b, none from
2b − a, and one each from the remaining two sets. The sum
of these 5 elements is divisible by 5.



▶ Case 3: like in case 2, some set has at least ⌈93⌉ = 3 elements
in it. WLOG, suppose there are no elements for d or e. a, b,
and c can be chosen such that d + e ≡ a+ b ≡ 2c mod 5.

▶ If possible, choose 2 elements from a, 2 from b, and one from
c , or 1 from a, 1 from b, and 3 from c . If either is possible,
we are done.

▶ If both are impossible, c has 1 or 2 elements and either a or b
have one element. WLOG, let it be a. Then, b has at least 6
elements. Choose 5 elements from b and we are done.



Prove that in a set of ten distinct 2 digit numbers, it is possible to
select two nonempty disjoint subsets whose members have the
same sum.

▶ There are 210 − 2 = 1022 distinct subsets.

▶ The sum of the elements in any subset must be between 10
and 90 + 91 + 92 + · · ·+ 99. There are < 1000 possible sums.

▶ Pigeons = subsets = 1022

▶ Holes = possible sums < 1000

▶ By the PHP, at least ⌈10221000⌉ = 2 subsets have the same sum.
Let these subsets be A and B.

▶ Take the intersection of A and B, A ∩ B, and take
A′ = A− (A ∩ B) and B ′ = B − (A ∩ B). A′ and B ′ are
disjoint and nonempty since otherwise, A ∩ B = A or B
meaning A and B are either not distinct or have different
sums.

▶ A′ and B ′ are nonempty disjoint subsets of our set of numbers
with equal sums.
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Come up with a problem that can be solved using the Pigeonhole
Principle. Have a partner solve it.
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