Composite Numbers With Prime-like Property Notations: 1) a|b| = a divides b E = 15|45

1) a|b: a divides b E.g. 15|45

2) (a, b) = d: GCD of a and b is d E.g. (15, 7) = 1

3) $a \equiv b \pmod{n} : n | (a - b) \text{ E.g. } 70 \equiv 25 \pmod{15}$

4) $\phi(n) =$ Number of integers a, such that $1 \le a \le (n-1)$ and (a, n) = 1

E.g. $\phi(11) = 10$, because $\{1, 2, ..., 10\}$, $\phi(9) = 6$ because $\{1, 2, 4, 5, 7, 8\}$, and $\phi(6) = 2$ because $\{1, 5\}$

Note: For a prime $p, \phi(p) = p - 1,$ $\phi(p^2) = p(p-1) = p^2 - p,$ because $\{1, 2, ..., p^2 - 1\} \setminus \{p, 2p, 3p, ..., (p-1)p\}$

Caution: $\tau(n)$ = Number of positive divisors of n. $\phi(n)$ = Euler's Totient function

Think of a number line with integers....

For integers m and $n \neq 0$, we have m = nk + r where $0 \leq r < |n|$.

E.g. m = -34 and n = 5. -34 = -7 * 5 + 1.

m = 21 and n = 5. 21 = 4 * 5 + 1. Notice the placements of -34 and 21 on the number line. One distance to the right of -35 and 21 respectively. So for a positive integer n, ndistinct remainders give us a way to partition all integers into n "classes"....

So $\{0, 1, ..., n-1\}$ is a complete set of "residue classes" modulo n. We eventually will drop the bar for convenience of writing.

So for n = 4, $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$ or $\{\overline{-7}, \overline{-6}, \overline{-5}, \overline{-4}\}$ which is "lined up" as $\{\bar{1}, \bar{2}, \bar{3}, \bar{0}\}$ or we could consider $\{\overline{-2}, \overline{-1}, \overline{0}, \overline{1}\}$ which is "lined up" as $\{\bar{2}, \bar{3}, \bar{0}, \overline{1}\}$.

Do these have to be consecutive integers? How about $\{\bar{0}, \bar{2}, \bar{4}, \bar{6}\}$? $\bar{6} = \bar{2}$ since $6 \equiv 2 \mod(4)$.So not a **Complete Set of Residue Classes (CSRC)**. How about $\{\bar{0}, \bar{3}, \bar{6}, \bar{9}\}$? This is "lined up" as $\{\bar{0}, \bar{3}, \bar{2}, \bar{1}\}$.

(Extra 1: Prove that if (k, n) = 1 and $\{\overline{a_1}, \overline{a_2}, ..., \overline{a_n}\}$ is a CSRC then $\{k\overline{a_1}, k\overline{a_2}, ..., k\overline{a_n}\}$ as well as $\{k\overline{a_1} + r, k\overline{a_2} + r, ..., k\overline{a_n} + r\}$ are both CSRCs.)

Note: For modulo $n, \bar{a} = \bar{b}$, iff $a \equiv b \pmod{n}$

Note: If n|a, n|b, and k is an integer, then n|ka and n|a + b.

Properties:

If $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$, and k an integer, then

i) $a + c \equiv b + d \pmod{n}$. (Think of directed distances adding up) ii) $a - c \equiv b - d \pmod{n}$. (Think of directed distances subtracting) iii) $ka \equiv kb \pmod{n}$. (Think of directed distance multiplied by k) iv) $ac \equiv bd \pmod{n}$. (Not so straight forward) (Explain using Pythagorean Theorem to distance formula to this proof pattern....) ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d).

GCD, Euclidean Algorithm, other facts derived from Eu. AL.

(i) Finding GCD: Using Eu.Al. instead of prime factorization. (5064, 624) = ? 5064 = 8 * (624) + 72 624 = 8 * (72) + 48 72 = 1 * (48) + <u>24</u>48 = 2 * (24) + 0

(ii) Argument that 24 is a common divisor is.....

Now let d = (5064, 624). So d|5064 and d|624.

5064 - 8 * (624) = 72 624 - 8 * (72) = 4872 - 1 * (48) = 24

Argument that d|24 is So 24 is the GCD.

(iii)Alternate proof that last non-zero remainder is the GCD: Observation: (a, b) = (kb + r, b) = (b, r), so(5064, 624) = (624, 72) = (72, 48) = (48, 24) = 24

Caution: If a = kb + r then (a, b) = (b, r) but it is not necessary that (a, b) = (a, r). E.g. 70 = 4(15) + 10, where (70, 15) = 5 = (15, 10) but (70, 10) = 10. Actually (a, b)|(a, r)

Observation 1: The last non-zero remainder is the GCD.

(iii) Also, working backwards on Eu. Al., we get: 24 = 72 - 48 24 = 72 - (624 - 8 * 72) 24 = 9 * 72 - 624 24 = 9 * (5064 - 8 * 624) - 62424 = 9 * 5064 - 73 * 624 Observation 2: The GCD, (\mathbf{a},\mathbf{b}) can be written as a linear combination of a and b.

Note that if m = ka + rb, then (a, b)|m. So (a, b) is the smallest positive integer that can be a linear combination of a and b and all such positive integers are d, 2d, 3d...

Observation 3: The GCD, (a, b) is the smallest positive integer that can be written as a linear combination of a and b. And all such positive linear combinations are multiples of (a, b).

If $ra \equiv b \pmod{n}$, then there exists an integer k such that kn = ra-b. I.e. b = ra-kn. So b is a lin. comb. of a and n. So by Fact 3, (a, n)|b. Obviously, if b = 1 then (a, n) = 1 (= b).

 $\begin{array}{l} Observation \ 4: \ ra \equiv b \ (mod \ n) \Longrightarrow (a,n) | b \ and \\ ra \equiv 1 \ (mod \ n) \Longrightarrow (a,n) = 1 \end{array}$

Observation 5: If $\mathbf{a} = \mathbf{kb} + \mathbf{r}$ then $(\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{r})$ and $(\mathbf{b}, \mathbf{r})|(\mathbf{a}, \mathbf{r})$. E.g. 70 = 4 * 15 + 10.

Observation 6:If $a \equiv b \pmod{n} \Longrightarrow (a, n) = (b, n)$

(Extra 2: Using extra 1 stated above and these six observations, try proving Euler's theorem and Fermat's Little Theorem yourself before looking at the proofs.) Reminder: **Euler's Totient Function**: $\phi(n)$: For any positive integer n, $\phi(n)$ is the number of all positive integers k less than n that are relatively prime to n.

Also, note that $a^{(n-1)} \equiv 1 \pmod{n}$ means $n | a^{(n-1)} - 1$. There exists an integer k, such that $nk = a^{(n-1)} - 1$. $1 = a^{(n-1)} - nk$. So 1 is a linear combination of a and n. (a, n) = 1 (Could have just used Observation 6 here.)

Euler's Theorem: Let a and n be relatively prime positive integers. I.e. (a, n) = 1. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's Little Theorem: Let *a* be a positive integer and *p* be a prime. Then $a^p \equiv a \pmod{p}$.

[Side note:] Use this theorem to solve AMC 10B 2017 problem 14 quickly.

Note: For a prime p: Any integer is either a multiple of p or is relatively prime to p. So, $a \neq 0 \pmod{p} \iff (a, p) = 1$.

So Fermat's Little Theorem can be split into two cases: case 1: *a* is a multiple of *p*. Then $a \equiv 0 \pmod{p}$ and $a^p \equiv 0 \pmod{p}$. So $a^p \equiv a \pmod{p}$. Not a very interesting fact. case 2: (a, p) = 1. Use Euler's Theorem. $\phi(p) = p - 1$, so **Statement 1:** $(a, p) = 1 \Rightarrow a^{(p-1)} \equiv 1 \pmod{p}$.

This means $a^p \equiv a \pmod{p}$

This can be equivalently stated as **Statement 2:** $a \not\equiv 0 \pmod{p} \Rightarrow a^{(p-1)} \equiv 1 \pmod{p}$.

Is this true for primes only? The two equivalent statements in case 2 are not equivalent for a non-prime. E.g. 30 is not a multiple of 42 and $(30,42) = 6 \neq 1$. (a, n) = 1 is a stricter condition than $a \not\equiv 0 \pmod{n}$ when n is a composite number.((a,n) could be a proper divisor of n.)

We will prove that the second statement forces n to be a prime while the first statement does not. We will give counter example to show that the first one does not.

If n is a positive integer such that, $a \not\equiv 0 \pmod{n} \Rightarrow a^{(n-1)} \equiv 1 \pmod{n}$ for every positive integer a, then n is a prime.

Comment: $a \not\equiv 0 \pmod{n}$ is not as strict as (a, n) = 1, so it has more candidates for a, which means statement 2 has a stronger property to satisfy.

proof: Since 2 and 3 are primes, assume n > 3. If n satisfies the property then for any positive integer a,

 $a \not\equiv 0 \pmod{n} \Rightarrow a^{(n-1)} \equiv 1 \pmod{n}.$ But $a^{(n-1)} \equiv 1 \pmod{n} \Rightarrow (a, n) = 1.$ So by transitivity, $a \not\equiv 0 \pmod{n} \Rightarrow (a, n) = 1.$ I.e. (r, n) = 1 for r = 1, 2, ..., n - 1. n is a prime.

Claim: There exist composite numbers that satisfy the property in the first statement. How do we find one?

If n = pq, a product of two distinct primes, then for any positive integer a, $(a, n) = 1 \Rightarrow (a, p) = 1$ and (a, q) = 1. We could use FLT to get $a^{(p-1)} \equiv 1 \pmod{p}$ and $a^{(q-1)} \equiv 1 \pmod{q}$. Now if p - 1|n - 1 and q - 1|n - 1, then we will have $a^{(n-1)} \equiv 1 \pmod{p}$ and $a^{(n-1)} \equiv 1 \pmod{q}$. I.e. $p|a^{(n-1)} - 1$ and $q|a^{(n-1)} - 1$. (p,q) = 1, so $pq|a^{(n-1)} - 1$. I.e. $n|a^{(n-1)} - 1$ and we will be done.

Notice p|n and p-1|n-1 is rare. It doesn't happen very often. E.g. 17 = 1 * 17 but $16 = 2^4$. Even for composite numbers: $50 = 2 * 5^2$ but $49 = 7^2$.

We need to search for suitable primes. n = 2q won't work because n - 1 would be odd and q - 1 even meaning $q - 1 \not | n - 1$. n = 3q (p = 3) is a good candidate because 2|n - 1. Now we need q such that q - 1|n - 1. Notice that 3q - 1 = 3(q - 1) + 2. The remainder is 2 when n - 1 is divided by q - 1. So n = 3q won't work either. In fact n = pq won't work for any two distinct primes: Let p < q. pq - 1 = p(q - 1) + p - 1. So remainder is p-1...

Well, maybe we need three distinct primes! p = 3 is still a promising candidate. q = 11 is easy to work with because we just need to make n to end with 1. So n = pqr = 33r. r=7 or 17 or 37 ...? Need to try them. r = 7 doesn't work since 3 * 7 * 11 = 231 and 6 / 230. r = 17? 3 * 17 * 11 = 51 + 510 = 561, and 2 | 560, 10 | 560, 16 | 560. 561 is a Carmichael number.

The interesting fact is that this process is not just convenient but the only way to create Carmichael numbers.

Why p - 1|n - 1?:

Definitions:

1) For positive integers a, n such that (a, n) = 1, order of $a \mod n$ is the least $m \ge 1$ such that $a^m \equiv 1 \pmod{n}$.

2) Also, if m = n - 1, a is called the *primitive root* of n.

Fact we need: (proof not included here but refer to the document referenced at the end to develop more understanding): For every prime p, there exist a primitive root. So there exists an a with order p - 1.

Claim: Existence of a primitive root implies that p - 1|n - 1 if p|n for a Carmichael number n and a prime p.

Thought Process: If $p-1 \not (n-1)$, then there is a positive remainder r, giving n-1 = k(p-1) + r.

So $a^{(n-1)} = a^{k(p-1)+r} = a^{k(p-1)}a^r$.

If we can find a primitive root a for one of the prime factors of n, such that (a, n) = 1, then $a^{(n-1)} \equiv 1 \pmod{n}$, since n is Carmichael, so $a^{(n-1)} \equiv 1 \pmod{p}$.

 $a^{(p-1)} \equiv 1 \pmod{p}$ by FLT, so $a^{k(p-1)} \equiv 1 \pmod{p}$.

So $1 \equiv a^r \pmod{p}$. r < (p-1), but order of a is p-1. Contradiction. This proves that p-1|n-1.

Need Chinese Remainder Theorem: For positive integers $n_1, n_2, ..., n_k$ and integers $a_1, a_2, ..., a_k$,

i) $x \equiv a_1 \pmod{n_1}$ $x \equiv a_2 \pmod{n_2}$. . $x \equiv a_k \pmod{n_k}$ ii) $(n_i, n_j) = 1$ for $1 \le i, j \le k$ iii) then this system has a solution and the solution is unique modulo $N = n_1 n_2 \dots n_k$.

Example: A box has gold coins. When divided among 6 people, 4 coins are left over, 5 people, 3 coins are left over. How many coins in the box? Notice that (6,5) = 1. Answer: 30n + 28.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf https://kconrad.math.uconn.edu/blurbs/ugradnumthy/ordersmodm.pdf https://en.wikipedia.org/wiki/Carmichael_number