Composite Numbers With Prime-like Property Notations:

1) $a|b : a$ divides $b \to g$. 15|45

2) $(a, b) = d$: GCD of a and b is d E.g. $(15, 7) = 1$

3) $a \equiv b \pmod{n}$: $n|(a - b)$ E.g. 70 $\equiv 25 \pmod{15}$

4) $\phi(n)$ = Number of integers a, such that $1 \le a \le (n-1)$ and $(a, n) = 1$

E.g. $\phi(11) = 10$, because $\{1, 2, ..., 10\}$, $\phi(9) = 6$ because $\{1, 2, 4, 5, 7, 8\}$, and $\phi(6) = 2$ because $\{1, 5\}$

Note: For a prime $p, \phi(p) = p - 1$, $\phi(p^2) = p(p-1) = p^2 - p$, because $\{1, 2, ..., p^2 - 1\} \setminus \{p, 2p, 3p, ..., (p-1)p\}$

Caution: $\tau(n)$ = Number of positive divisors of n. $\phi(n)$ = Euler's Totient function

Think of a number line with integers....

For integers m and $n \neq 0$, we have $m = nk + r$ where $0 \leq r < |n|$.

E.g. $m = -34$ and $n = 5$. $-34 = -7 * 5 + 1$.

 $m = 21$ and $n = 5$. $21 = 4 * 5 + 1$. Notice the placements of -34 and 21 on the number line. One distance to the right of -35 and 21 respectively. So for a positive integer n, n distinct remainders give us a way to partition all integers into n "classes"....

So $\{0, 1, ..., n-1\}$ is a complete set of "residue classes" modulo n. We eventually will drop the bar for convenience of writing.

So for $n = 4$, $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ or $\{\overline{-7}, \overline{-6}, \overline{-5}, \overline{-4}\}$ which is "lined up" as $\{\overline{1}, \overline{2}, \overline{3}, \overline{0}\}$ or we could consider $\{\overline{-2}, \overline{-1}, \overline{0}, \overline{1}\}$ which is "lined up" as $\{\overline{2}, \overline{3}, \overline{0}, \overline{1}\}$.

Do these have to be consecutive integers? How about $\{0, 2, 4, 6\}$? $\bar{6} = \bar{2}$ since $6 \equiv 2 \mod(4)$. So not a Complete Set of Residue Classes (CSRC). How about $\{\bar{0}, \bar{3}, \bar{6}, \bar{9}\}$? This is "lined up" as $\{\bar{0}, \bar{3}, \bar{2}, \bar{1}\}$.

(Extra 1: Prove that if $(k, n) = 1$ and $\{\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}\}$ is a CSRC then $\{k\overline{a_1}, k\overline{a_2}, \dots, k\overline{a_n}\}$ as well as ${k\overline{a_1} + r, k\overline{a_2} + r, ..., k\overline{a_n} + r}$ are both CSRCs.)

Note: For modulo n, $\bar{a} = \bar{b}$, iff $a \equiv b \pmod{n}$

Note: If $n|a, n|b$, and k is an integer, then $n|ka$ and $n|a+b$.

Properties:

If $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$, and k an integer, then

i) $a + c \equiv b + d \pmod{n}$. (Think of directed distances adding up) ii)a − c ≡ b − d (mod n). (Think of directed distances subtracting) iii) $ka \equiv kb \pmod{n}$. (Think of directed distance multiplied by k) iv) $ac \equiv bd \pmod{n}$. (Not so straight forward) (Explain using Pythagorean Theorem to distance formula to this proof pattern.....) $ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d).$

GCD, Euclidean Algorithm, other facts derived from Eu. AL.

(i) Finding GCD: Using Eu.Al. instead of prime factorization. $(5064, 624) = ?$ $5064 = 8 * (624) + 72$ $624 = 8 * (72) + 48$ $72 = 1 * (48) + 24$ $48 = 2 * (24) + 0$

(ii) Argument that 24 is a common divisor is.....

Now let $d = (5064, 624)$. So $d|5064$ and $d|624$.

 $5064 - 8 * (624) = 72$ $624 - 8 * (72) = 48$ $72 - 1 * (48) = 24$

Argument that $d/24$ is So 24 is the GCD.

(iii)Alternate proof that last non-zero remainder is the GCD: Observation: $(a, b) = (kb + r, b) = (b, r), so(5064, 624) = (624, 72) = (72, 48) = (48, 24) =$ 24

Caution: If $a = kb + r$ then $(a, b) = (b, r)$ but it is not necessary that $(a, b) = (a, r)$. E.g. $70 = 4(15) + 10$, where $(70, 15) = 5 = (15, 10)$ but $(70, 10) = 10$. Actually $(a, b) | (a, r)$

Observation 1: The last non-zero remainder is the GCD.

(iii) Also, working backwards on Eu. Al., we get: $24 = 72 - 48$ $24 = 72 - (624 - 8 * 72)$ $24 = 9 * 72 - 624$ $24 = 9 * (5064 - 8 * 624) - 624$ $24 = 9 * 5064 - 73 * 624$

Observation 2: The GCD, (a, b) can be written as a linear combination of a and b.

Note that if $m = ka + rb$, then $(a, b)|m$. So (a, b) is the smallest positive integer that can be a linear combination of a and b and all such positive integers are $d, 2d, 3d...$

Observation 3: The GCD, (a, b) is the smallest positive integer that can be written as a linear combination of a and b. And all such positive linear combinations are multiples of (a, b).

If $ra \equiv b \pmod{n}$, then there exists an integer k such that $kn = ra-b$. I.e. $b = ra-kn$. So b is a lin. comb. of a and n. So by Fact 3, $(a, n)|b$. Obviously, if $b = 1$ then $(a, n) = 1(= b)$.

Observation 4: ra \equiv b (mod n) \Longrightarrow (a, n)|b and $ra \equiv 1 \pmod{n} \Longrightarrow (a, n) = 1$

Observation 5: If $a = kb + r$ then $(a, b) = (b, r)$ and $(b, r)|(a, r)$. E.g. $70 = 4 * 15 + 10$.

Observation 6:If $a \equiv b \pmod{n} \Longrightarrow (a, n) = (b, n)$

(Extra 2: Using extra 1 stated above and these six observations, try proving Euler's theorem and Fermat's Little Theorem yourself before looking at the proofs.) Reminder: Euler's Totient Function: $\phi(n)$: For any positive integer n, $\phi(n)$ is the number of all positive integers k less than n that are relatively prime to n .

Also, note that $a^{(n-1)} \equiv 1 \pmod{n}$ means $n|a^{(n-1)}-1$. There exists an integer k, such that $nk = a^{(n-1)} - 1$. $1 = a^{(n-1)} - nk$. So 1 is a linear combination of a and n. $(a, n) = 1$ (Could have just used Observation 6 here.)

Euler's Theorem: Let a and n be relatively prime positive integers. I.e. $(a, n) = 1$. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's Little Theorem: Let a be a positive integer and p be a prime. Then $a^p \equiv a \pmod{p}$.

[Side note:] Use this theorem to solve AMC 10B 2017 problem 14 quickly.

Note: For a prime p: Any integer is either a multiple of p or is relatively prime to p. So, $a \not\equiv 0 \pmod{p} \Longleftrightarrow (a, p) = 1$.

So Fermat's Little Theorem can be split into two cases: case 1: *a* is a multiple of *p*. Then $a \equiv 0 \pmod{p}$ and $a^p \equiv 0 \pmod{p}$. So $a^p \equiv a \pmod{p}$. Not a very interesting fact.

case 2: $(a, p) = 1$. Use Euler's Theorem. $\phi(p) = p - 1$, so Statement 1: $(a, p) = 1 \Rightarrow a^{(p-1)} \equiv 1 \pmod{p}$.

This means $a^p \equiv a \pmod{p}$

This can be equivalently stated as Statement 2: $a \not\equiv 0 \pmod{p} \Rightarrow a^{(p-1)} \equiv 1 \pmod{p}$.

Is this true for primes only? The two equivalent statements in case 2 are not equivalent for a non-prime. E.g. 30 is not a multiple of 42 and $(30,42) = 6 \neq 1$. $(a, n) = 1$ is a stricter condition than $a \not\equiv 0 \pmod{n}$ when n is a composite number. $((a, n)$ could be a proper divisor of n.)

We will prove that the second statement forces n to be a prime while the first statement does not. We will give counter example to show that the first one does not.

If n is a positive integer such that, $a \not\equiv 0 \pmod{n} \Rightarrow a^{(n-1)} \equiv 1 \pmod{n}$ for every positive integer a , then n is a prime.

Comment: $a \not\equiv 0 \pmod{n}$ is not as strict as $(a, n) = 1$, so it has more candidates for a, which means statement 2 has a stronger property to satisfy.

proof: Since 2 and 3 are primes, assume $n > 3$. If n satisfies the property then for any positive integer a,

 $a \not\equiv 0 \pmod{n} \Rightarrow a^{(n-1)} \equiv 1 \pmod{n}.$ But $a^{(n-1)} \equiv 1 \pmod{n} \Rightarrow (a, n) = 1$. So by transitivity, $a \not\equiv 0 \pmod{n} \Rightarrow (a, n) = 1.$ I.e. $(r, n) = 1$ for $r = 1, 2, ..., n - 1$. *n* is a prime.

Claim: There exist composite numbers that satisfy the property in the first statement. How do we find one?

If $n = pq$, a product of two distinct primes, then for any positive integer $a, (a, n) = 1 \Rightarrow$ $(a, p) = 1$ and $(a, q) = 1$. We could use FLT to get $a^{(p-1)} \equiv 1 \pmod{p}$ and $a^{(q-1)} \equiv 1$ (mod q). Now if $p-1|n-1$ and $q-1|n-1$, then we will have $a^{(n-1)} \equiv 1 \pmod{p}$ and $a^{(n-1)} \equiv 1 \pmod{q}$. I.e. $p|a^{(n-1)}-1$ and $q|a^{(n-1)}-1$. $(p,q) = 1$, so $pq|a^{(n-1)}-1$. I.e. $n|a^{(n-1)}-1$ and we will be done.

Notice $p|n$ and $p-1|n-1$ is rare. It doesn't happen very often. E.g. 17 = 1 $*$ 17 but $16 = 2^4$. Even for composite numbers: $50 = 2 * 5^2$ but $49 = 7^2$.

We need to search for suitable primes. $n = 2q$ won't work because $n - 1$ would be odd and $q-1$ even meaning $q-1 \nmid n-1$. $n=3q$ ($p=3$) is a good candidate because $2|n-1$. Now we need q such that $q-1|n-1$.

Notice that $3q - 1 = 3(q - 1) + 2$. The remainder is 2 when $n - 1$ is divided by $q - 1$. So $n = 3q$ won't work either. In fact $n = pq$ won't work for any two distinct primes: Let $p < q$. $pq - 1 = p(q - 1) + p - 1$. So remainder is p-1...

Well, maybe we need three distinct primes! $p = 3$ is still a promising candidate. $q = 11$ is easy to work with because we just need to make n to end with 1. So $n = pqr = 33r$. r=7 or 17 or 37 ...? Need to try them. $r = 7$ doesn't work since $3 * 7 * 11 = 231$ and 6 $/230$. $r = 17$? $3 * 17 * 11 = 51 + 510 = 561$, and $2|560, 10|560, 16|560$. 561 is a Carmichael number.

The interesting fact is that this process is not just convenient but the only way to create Carmichael numbers.

Why $p - 1|n - 1$?:

Definitions:

1) For positive integers a, n such that $(a, n) = 1$, order of a mod n is the least $m \ge 1$ such that $a^m \equiv 1 \pmod{n}$.

2) Also, if $m = n - 1$, a is called the *primitive root* of n.

Fact we need:(proof not included here but refer to the document referenced at the end to develop more understanding): For every prime p , there exist a primitive root. So there exists an a with order $p-1$.

Claim: Existence of a primitive root implies that $p-1|n-1$ if p|n for a Carmichael number n and a prime p .

Thought Process: If $p-1 \nmid n-1$, then there is a positive remainder r, giving $n-1 =$ $k(p-1) + r$.

So $a^{(n-1)} = a^{k(p-1)+r} = a^{k(p-1)}a^r$.

If we can find a primitive root a for one of the prime factors of n, such that $(a, n) = 1$, then $a^{(n-1)} \equiv 1 \pmod{n}$, since *n* is Carmichael, so $a^{(n-1)} \equiv 1 \pmod{p}$.

 $a^{(p-1)} \equiv 1 \pmod{p}$ by FLT, so $a^{k(p-1)} \equiv 1 \pmod{p}$.

So $1 \equiv a^r \pmod{p}$. $r < (p-1)$, but order of a is $p-1$. Contradiction. This proves that $p-1|n-1$.

Need Chinese Remainder Theorem: For positive integers $n_1, n_2, ..., n_k$ and integers $a_1, a_2, ..., a_k,$

i) $x \equiv a_1 \pmod{n_1}$ $x \equiv a_2 \pmod{n_2}$. . . $x \equiv a_k \pmod{n_k}$ ii) $(n_i, n_j) = 1$ for $1 \leq i, j \leq k$ iii) then this system has a solution and the solution is unique modulo $N = n_1 n_2 ... n_k$.

Example: A box has gold coins. When divided among 6 people, 4 coins are left over, 5 people, 3 coins are left over. How many coins in the box? Notice that $(6, 5) = 1$. Answer: $30n + 28$.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf https://kconrad.math.uconn.edu/blurbs/ugradnumthy/ordersmodm.pdf https://en.wikipedia.org/wiki/Carmichael number