
Composite Numbers With Prime-like Property
Notations:
1) a|b : a divides b E.g. 15|45

2) (a, b) = d : GCD of a and b is d E.g. (15, 7) = 1

3) a ≡ b (mod n) : n|(a− b) E.g. 70 ≡ 25 (mod 15)

4) φ(n) = Number of integers a, such that 1 ≤ a ≤ (n− 1) and (a, n) = 1

E.g. φ(11) = 10, because {1, 2, ..., 10},
φ(9) = 6 because {1, 2, 4, 5, 7, 8}, and φ(6) = 2 because {1, 5}

Note: For a prime p, φ(p) = p− 1,
φ(p2) = p(p− 1) = p2 − p, because {1, 2, ..., p2 − 1} \ {p, 2p, 3p, ...., (p− 1)p}

Caution: τ(n)= Number of positive divisors of n.
φ(n)= Euler’s Totient function

Think of a number line with integers....

For integers m and n 6= 0, we have m = nk + r where 0 ≤ r < |n|.

E.g. m = −34 and n = 5. −34 = −7 ∗ 5 + 1.
m = 21 and n = 5. 21 = 4 ∗ 5 + 1. Notice the placements of -34 and 21 on the number
line. One distance to the right of -35 and 21 respectively. So for a positive integer n, n
distinct remainders give us a way to partition all integers into n “classes”....
So {0̄, 1̄, ...., n− 1} is a complete set of “residue classes” modulo n. We eventually will
drop the bar for convenience of writing.
So for n = 4, {0̄, 1̄, 2̄, 3̄} or{−7,−6,−5,−4} which is “lined up” as {1̄, 2̄, 3̄, 0̄}
or we could consider {−2,−1, 0, 1} which is “lined up” as {2̄, 3̄, 0̄, 1̄}.

Do these have to be consecutive integers? How about {0̄, 2̄, 4̄, 6̄}?
6̄ = 2̄ since 6 ≡ 2 mod(4).So not a Complete Set of Residue Classes (CSRC).
How about {0̄, 3̄, 6̄, 9̄}? This is “lined up” as {0̄, 3̄, 2̄, 1̄}.

(Extra 1: Prove that if (k, n) = 1 and {a1, a2, ...., an} is a CSRC then {ka1, ka2, ...., kan}
as well as {ka1 + r, ka2 + r, ...., kan + r} are both CSRCs.)

Note: For modulo n, ā = b̄, iff a ≡ b (mod n)

Note: If n|a, n|b, and k is an integer, then n|ka and n|a+ b.

Properties:
If a ≡ b (mod n), c ≡ d (mod n), and k an integer, then



i) a+ c ≡ b+ d (mod n). (Think of directed distances adding up)
ii)a− c ≡ b− d (mod n). (Think of directed distances subtracting)
iii) ka ≡ kb (mod n). (Think of directed distance multiplied by k)
iv) ac ≡ bd (mod n). (Not so straight forward) (Explain using Pythagorean Theorem to
distance formula to this proof pattern.....)
ac− bd = ac− bc+ bc− bd = c(a− b) + b(c− d).

GCD, Euclidean Algorithm, other facts derived from Eu. AL.

(i) Finding GCD: Using Eu.Al. instead of prime factorization.
(5064, 624)= ?
5064 = 8 ∗ (624) + 72
624 = 8 ∗ (72) + 48
72 = 1 ∗ (48) + 24
48 = 2 ∗ (24) + 0

(ii) Argument that 24 is a common divisor is.....

Now let d = (5064, 624). So d|5064 and d|624.

5064− 8 ∗ (624) = 72
624− 8 ∗ (72) = 48
72− 1 ∗ (48) = 24

Argument that d|24 is .....
So 24 is the GCD.

(iii)Alternate proof that last non-zero remainder is the GCD:
Observation: (a, b) = (kb+ r, b) = (b, r), so(5064, 624) = (624, 72) = (72, 48) = (48, 24) =
24

Caution: If a = kb+ r then (a, b) = (b, r) but it is not necessary that (a, b) = (a, r). E.g.
70 = 4(15) + 10, where (70, 15) = 5 = (15, 10) but (70, 10) = 10. Actually (a, b)|(a, r)

Observation 1: The last non-zero remainder is the GCD.

(iii) Also, working backwards on Eu. Al., we get:
24 = 72− 48
24 = 72− (624− 8 ∗ 72)
24 = 9 ∗ 72− 624
24 = 9 ∗ (5064− 8 ∗ 624)− 624
24 = 9 ∗ 5064− 73 ∗ 624



Observation 2: The GCD, (a,b) can be written as a linear combination of a
and b.

Note that if m = ka+ rb, then (a, b)|m. So (a, b) is the smallest positive integer that can
be a linear combination of a and b and all such positive integers are d, 2d, 3d....

Observation 3: The GCD, (a,b) is the smallest positive integer that can be
written as a linear combination of a and b. And all such positive linear com-
binations are multiples of (a,b).

If ra ≡ b (mod n), then there exists an integer k such that kn = ra−b. I.e. b = ra−kn. So
b is a lin. comb. of a and n. So by Fact 3, (a, n)|b. Obviously, if b = 1 then (a, n) = 1(= b).

Observation 4: ra ≡ b (mod n) =⇒ (a,n)|b and
ra ≡ 1 (mod n) =⇒ (a,n) = 1

Observation 5: If a = kb + r then (a,b) = (b, r) and (b, r)|(a, r). E.g. 70 = 4 ∗ 15 + 10.

Observation 6:If a ≡ b (mod n) =⇒ (a,n) = (b,n)

(Extra 2: Using extra 1 stated above and these six observations, try proving Euler’s
theorem and Fermat’s Little Theorem yourself before looking at the proofs.)
Reminder: Euler’s Totient Function: φ(n): For any positive integer n, φ(n) is the
number of all positive integers k less than n that are relatively prime to n.

Also, note that a(n−1) ≡ 1 (mod n) means n|a(n−1) − 1. There exists an integer k, such
that nk = a(n−1)− 1. 1 = a(n−1)− nk. So 1 is a linear combination of a and n. (a, n) = 1
(Could have just used Observation 6 here.)

Euler’s Theorem: Let a and n be relatively prime positive integers. I.e. (a, n) = 1.
Then aφ(n) ≡ 1 (mod n).

Fermat’s Little Theorem: Let a be a positive integer and p be a prime.
Then ap ≡ a (mod p).

[Side note:] Use this theorem to solve AMC 10B 2017 problem 14 quickly.

Note: For a prime p: Any integer is either a multiple of p or is relatively prime to p.
So, a 6≡ 0 (mod p) ⇐⇒ (a, p) = 1.

So Fermat’s Little Theorem can be split into two cases:
case 1: a is a multiple of p. Then a ≡ 0 (mod p) and ap ≡ 0 (mod p).
So ap ≡ a (mod p). Not a very interesting fact.



case 2: (a, p) = 1. Use Euler’s Theorem. φ(p) = p− 1, so
Statement 1: (a, p) = 1 ⇒ a(p−1) ≡ 1 (mod p) .

This means ap ≡ a (mod p)

This can be equivalently stated as
Statement 2: a 6≡ 0 (mod p) ⇒ a(p−1) ≡ 1 (mod p).

Is this true for primes only? The two equivalent statements in case 2 are not equivalent
for a non-prime. E.g. 30 is not a multiple of 42 and (30,42) = 6 6= 1.
(a, n) = 1 is a stricter condition than a 6≡ 0 (mod n) when n is a composite number.((a,n)
could be a proper divisor of n.)

We will prove that the second statement forces n to be a prime while the first statement
does not. We will give counter example to show that the first one does not.

If n is a positive integer such that, a 6≡ 0 (mod n)⇒ a(n−1) ≡ 1 (mod n) for every positive
integer a, then n is a prime.

Comment: a 6≡ 0 (mod n) is not as strict as (a, n) = 1, so it has more candidates for a,
which means statement 2 has a stronger property to satisfy.
proof: Since 2 and 3 are primes, assume n > 3. If n satisfies the property then for any
positive integer a,
a 6≡ 0 (mod n) ⇒ a(n−1) ≡ 1 (mod n).
But a(n−1) ≡ 1 (mod n) ⇒ (a, n) = 1.
So by transitivity,
a 6≡ 0 (mod n) ⇒ (a, n) = 1.
I.e. (r, n) = 1 for r = 1, 2, ..., n− 1. n is a prime.

Claim: There exist composite numbers that satisfy the property in the first statement.
How do we find one?

If n = pq, a product of two distinct primes, then for any positive integer a, (a, n) = 1⇒
(a, p) = 1 and (a, q) = 1. We could use FLT to get a(p−1) ≡ 1 (mod p) and a(q−1) ≡ 1
(mod q). Now if p − 1|n − 1 and q − 1|n − 1, then we will have a(n−1) ≡ 1 (mod p) and
a(n−1) ≡ 1 (mod q). I.e. p|a(n−1) − 1 and q|a(n−1) − 1. (p, q) = 1, so pq|a(n−1) − 1. I.e.
n|a(n−1) − 1 and we will be done.

Notice p|n and p − 1|n − 1 is rare. It doesn’t happen very often. E.g. 17 = 1 ∗ 17 but
16 = 24. Even for composite numbers: 50 = 2 ∗ 52 but 49 = 72.

We need to search for suitable primes. n = 2q won’t work because n − 1 would be odd
and q− 1 even meaning q− 1 6 |n− 1. n = 3q (p = 3) is a good candidate because 2|n− 1.
Now we need q such that q − 1|n− 1.



Notice that 3q − 1 = 3(q − 1) + 2. The remainder is 2 when n − 1 is divided by q − 1.
So n = 3q won’t work either. In fact n = pq won’t work for any two distinct primes: Let
p < q. pq − 1 = p(q − 1) + p− 1. So remainder is p-1...
Well, maybe we need three distinct primes! p = 3 is still a promising candidate. q = 11 is
easy to work with because we just need to make n to end with 1. So n = pqr = 33r. r=7
or 17 or 37 ...? Need to try them. r = 7 doesn’t work since 3 ∗ 7 ∗ 11 = 231 and 6 6 |230.
r = 17? 3 ∗ 17 ∗ 11 = 51 + 510 = 561, and 2|560, 10|560, 16|560. 561 is a Carmichael
number.
The interesting fact is that this process is not just convenient but the only way to create
Carmichael numbers.
Why p− 1|n− 1?:
Definitions:
1) For positive integers a, n such that (a, n) = 1, order of a mod n is the least m ≥ 1 such
that am ≡ 1 (mod n).
2) Also, if m = n− 1, a is called the primitive root of n.
Fact we need:(proof not included here but refer to the document referenced at the end to
develop more understanding): For every prime p, there exist a primitive root. So there
exists an a with order p− 1.
Claim: Existence of a primitive root implies that p − 1|n − 1 if p|n for a Carmichael
number n and a prime p.
Thought Process: If p − 1 6 |n − 1, then there is a positive remainder r, giving n − 1 =
k(p− 1) + r.
So a(n−1) = ak(p−1)+r = ak(p−1)ar.
If we can find a primitive root a for one of the prime factors of n, such that (a, n) = 1,then
a(n−1) ≡ 1 (mod n), since n is Carmichael, so a(n−1) ≡ 1 (mod p).
a(p−1) ≡ 1 (mod p) by FLT, so ak(p−1) ≡ 1 (mod p).
So 1 ≡ ar (mod p). r < (p− 1), but order of a is p− 1. Contradiction. This proves that
p− 1|n− 1.

Need Chinese Remainder Theorem: For positive integers n1, n2, ..., nk and integers
a1, a2, ..., ak,
i) x ≡ a1 (mod n1)
x ≡ a2 (mod n2)
.
.
.
x ≡ ak (mod nk)
ii) (ni, nj) = 1 for 1 ≤ i, j ≤ k
iii) then this system has a solution and the solution is unique modulo N = n1n2...nk.

Example: A box has gold coins. When divided among 6 people, 4 coins are left over, 5
people, 3 coins are left over. How many coins in the box? Notice that (6, 5) = 1. Answer:
30n+ 28.



https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/ordersmodm.pdf

https://en.wikipedia.org/wiki/Carmichael number


