BMC Beginners II Modular Arithmetic II			Name: Date:	
<u>Review</u>				
Euclidian Division Find the remainder of:	<u>Clock Math</u> Calculate:		<u>Equivalence (mod m)</u> Find the additive inverse of:	
12) 13 12) 10 12) -2	11 + 2 = (mod 12) 5 + 5 = (mod 12) 5 - 7 = (mod 12)			
Using Equivalence				
Is 279 + 15 divisible by 7?		What is 500 + 1000 (mod 1021)?		
279 = (mod 7) 15 = (mod 7) 279 + 15 = + = (mod	7)	500 = (mod 1021) 1000 = (mod 1021) (hint: think negative) 500 + 1000 = + = (mod 1021)		
Multiplication Working mod 6, calculate:				
3 × 3 = (mod 6)	9 × 3 = (mo	od 6)	9 × 9 = (mod 6)	
5 × 2 = (mod 6)	-1 × 2 = (mod 6)		-1 × -4 = (mod 6)	

Inversion, "Division"

A *multiplicative inverse* of x is a number y such that $x \times y = 1.0$ has no multiplicative inverse.

Find the multiplicative inverse of each number, mod 5.

0	1	2	3	4

What is invertible, mod 6? If not invertible, cross out the box. If invertible, find the inverse.

0	1	2	3	4	5

What is invertible, mod 9? If not invertible, cross out the box. If invertible, find the inverse.

0	1	2	3	4	5	6	7	8

Modular Algebra

Use the inverses found above to solve:

$$4x = 1 \pmod{5}$$
 $4x = 1 \pmod{6}$ $4x = 1 \pmod{9}$

$$2x = 3 \pmod{5}$$
 $5x = 4 \pmod{6}$ $5x = 4 \pmod{9}$

Exponentiation

 $x^n = x \cdot x \cdot \ldots \cdot x$, n times. In the world of modular arithmetic, it is not true that you can reduce the exponent, mod n. For example: $3^{10} \neq 3^3 \pmod{7}$, even though $10 = 3 \pmod{7}$. However, because of the properties of multiplication, you can reduce the base of the exponentiation: $10^3 = 3^3 \pmod{7}$.

Calculate:

$$1^{5} = (mod 7)$$
 $9^{3} = (mod 7)$

$$6^2 = (mod 7)$$
 $9^6 = (mod 7)$

Find the remainder of: $13\overline{599}^7$

1. Find the remainder of $13\overline{)}99$.

- 2. Therefore, 99 = __ (mod 13).
- 3. Raise that value to the power of 7.

Don't make it too hard on yourself! Work in chunks: $x^7 = x^3 \times x^2 \times x^2$

4. Finally, we get that: $99^7 = __$ (mod 13).

