BMC Beginners II Modular Arithmetic

Name:	
Date:	

Euclidean Division

Divide, find the quotient and remainder, then write an equation of the form $a = q^*b + r$.

ex) 4	1 5⊏9 - <u>5</u> 4	9 = <mark>1</mark> *5 + _	4⊤15 _	15 =*4 +	12⊓13
	6⊏9		4⊏21		12 ⊏2 5

Clock Math

Draw in a "clock", in the **mod 5** world, to help you solve the arithmetic questions.

Equivalence (mod m)

List four numbers that are <u>equivalent</u> to the given number **mod 7**.

ex) $5 = \{-2,5,12,19\}$ $0 = \{ , , , , \}$ $1 = \{ , , , , \}$ $2 = \{ , , , , \}$ $-2 = \{ , , , , \}$

Is 5 = 2 (mod 2)? How about (mod 3)? Is 6 = 3 (mod 2)? How about (mod 3)?

Using only the integers {0,1,2,3,4,5,6,7,8}, fill in the table for the <u>additive inverses</u> of each number in the **mod 9** world.

Number	0	1	2	3	4	5	6	7	8
Inverse	0								1