
2 Hall’s marriage theorem

Here’s how it’s traditionally stated. I find it a little cringe-inducting, but it’s really a theorem
about bi-partite graphs.

Theorem 1 (Hall’s marriage theorem, 1935) Given a collection of people containing n men
and at least n women, the following two properties are equivalent:

• For any subset of the men [including the set of all n men], if the number of men in the subset
is k, then there are at least k women in the collection known to at least one man in the subset.

• There is a way to match each man with a distinct woman he knows in the collection.

Yuck. But does the mathematical idea make sense? Here’s way to say it more abstractly.

2.1 Hall’s marriage theorem – abstractly

Theorem 2 (Hall’s matching theorem) Given a collection of n sets of positive integers: A1, A2, . . . An

(the sets are not necessarily distinct), the following two properties are equivalent

• For any subcollection of the n sets [including the subcollection of all the sets], if the number
of subsets in the subcollection is k, then the union of those subsets contains at least k distinct
integers.

• There is a way to pick a distinct integer from each set (i.e. the same integer is not chosen
for two or more sets).

Can you see that this is equivalent to the previous description? The “men” in the previous description
are the indices (i.e. the subscripts) of the sets, and the “women” known to the ith “man” are the integers
belonging to the set Ai.

2.2 Another even mathier way to say it

Definition 3 A bipartite graph has two disjoint sets of vertices A and B such that every edge in
the graph connects a vertex in set A to a vertex in set B.

Further, for every set of vertices X ⊆ A we can define the set

YX = {y ∈ B | there’s an edge in the graph from some element of X to y}.

Theorem 4 (Hall’s marriage theorem, 1935) If we have a finite bipartite graph as above then
the condition that, for every subset of vertices X ⊆ A, we have |X| ≤ |YX | is equivalent to the
condition that there is a subset of edges of the graph (aka a matching) that takes every vertex in A
to a distinct vertex in B.

Can you see that this is equivalent to the previous two descriptions?
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3 Proof of the theorem

(I’m going to use the second way of expressing the theorem, with the sets A1, A2, . . . , An) If we
have trouble visualizing it, we might want to go back to the card example.)

The theorem says that two things are equivalent, but maybe we can immediately see why IF
there’s a way to select a distinct integer from each set, the weird condition on unions of subcol-
lections must also be true. (can someone explain it during the circle?) So let’s focus on the other
direction, showing that when the weird condition is met, there must be a way to select a distinct
integer from each set.

We’ll use induction on n. The base case, when n = 1, is pretty immediate: There’s exactly
one set A1 and it has at least one integer in it. If we have time, we might explicitly work out the
case when n = 2 in class, too, though we don’t need to do that for our proof.

3.1 The Inductive Step

For the inductive step, suppose we’ve managed to verify the result really is true for all the positive
integers up to n. We’d like to use that to prove the result for n + 1. So we begin with a collection
of sets A1, A2, . . . An+1 that obey the weird condition on unions of subcollections, and we want to
find a way to pick a distinct integer from each set.

So let’s just look at the “last” subset, An+1. It contains at least one integer (why?), so let’s
just take some integer from it, let’s call it xn+1 and see if we it is possible to select distinct integers
other than xn+1from all the other sets A1, A + 2, . . . An. If we can, great, we’re done! But what if
it simply isn’t possible to do and we’ve painted ourselves into a corner?

3.2 What might go wrong

By the inductive hypothesis, that means that, after we removed xn+1 from all the sets A1, A2, . . . An,
the weird condition on unions of subintervals wasn’t met. In other words, there must be a subcol-
lection of these n sets, whose union has fewer integers than the number of sets in the subcollection.
But if you restore xn+1 to the sets in that subcollection, their union would have at least as many
integers as the number of sets in that subcollection. (do you see why?) So that means the union
of the sets in that subcollection must have exactly the same number of integers as there are sets in
the subcollection (do you see why?).

Let’s call the sets in that subcollection B1, B2, . . . Bk, and the remaining sets C1, C2, . . . Cn+1−k.
Since k is less than or equal to n, we can apply the induction hypotheses to the sets B1, B2, . . . , Bk,
so we can pick distinct representatives for each of them.

3.3 Out of the corner

If we then remove any occurences of those representatives from all of the sets C1, C2, . . . Cn+1−k,
we’d like to verify that these sets obey the weird union of subcollections property. That is, there
will be at least j distinct integers in the union of any subcollection of j of these sets (for any j
between 1 and n + 1 − k. But if some such subcollection of j of these sets had a union that was
smaller than j, then the union of these sets with the sets B1, B2, . . . , Bk would have size smaller
than j + k, which contradicts the conditions of the problem.

Can we unwrap this proof?
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4 applying that theorem to the card activity

In the card puzzle we played with, each pile is being ”married” to a rank; or, to describe the problem
another way: each pile of cards represents a vertex in set A, and each rank of card represents a
vertex in set B, and there’s an edge between a pile and a rank if there’s at least one card of that
rank in the pile. By having each pile give us one card with a different rank, we are creating a
matching between the pile-vertices and the rank-vertices.

In either case, since each pile has the same number of cards as remain for each rank, you can
see by the pigeonhole principle that the union of k distinct piles must contain at least one card for
at least k distinct ranks.

5 Contest-style Problems once we’ve learned the theorem

Who is ”marrying” whom?

Problem 5 In a 2n×2n chessboard, there are n rooks in each row and each column of the board.
Show that there exist 2n rooks no two of whom are in the same row and same column. (Hint: we
are “marrying” rows to columns.)

Problem 6 (Putnam 2012) A round-robin tournament of 2n teams lasted for 2n − 1 days, as
follows. On each day, every team played one game against another team, with one team winning
and one team losing in each of the n games. Over the course of the tournament, each team played
every other team exactly once. Can one necessarily choose one winning team from each day without
choosing any team more than once?

Problem 7 (Kazakhstan 2003) We are given two square sheets of paper with area 2003. Suppose
we divide each of these papers into 2003 polygons, each of area 1. (The divisions for the two piece of
papers may be distinct.) Then we place the two sheets of paper directly on top of each other. Show
that we can place 2003 pins on the pieces of paper so that all 4006 polygons have been pierced.

Problem 8 (Canada 2006) In a rectangular array of nonnegative reals with m rows and n columns,
each row and each column contains at least one positive element. Moreover, if a row and a column
intersect in a positive element, then the sums of their elements are the same. Prove that m = n.

Problem 9 (Baltic Way 2013) Santa Claus has at least n gifts for n children. For i ∈ {1, 2, . . . , n},
the ith child considers xi > 0 of these items to be desirable. Assume that

1

x1
+ · · ·+ 1

xn
≤ 1

Prove that Santa Claus can give each child a gift that this child likes

6 A few theorems that follow from Hall’s Matching Theorem

We might mention one or two of these today, though they would really require a second math circle
session to really cover them. (And there are several other theorems we could add to this list!)

Theorem 5 (Kőnigs Matching Theorem) Prove that if all the vertices of a bipartite graph
have the same degree, then it has a perfect matching. (compare to the warmup problems)

Wait! What’s a bipartite graph? What does it mean for vertices to “have the same degree”?
What’s a perfect matching? (We might actually answer these questions today)
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Theorem 6 (Birkhoff-von Neumann) Any doubly-stochastic matrix may be represented as a
convex combination of permutation matrices

Wait! What’s a doubly-stochastic matrix? What’s a permutation matrix? What’s a convex
combination? And what on earth does this have to do with Hall’s marriage theorem? [Hint: each
row of the matrix is going to ”marry” each column and we’re doing to use that to get one of our
permutation matrixes.]

Theorem 7 (Dilworth) If every antichain in a (finite) partially ordered set has at most m ele-
ments, then the set may be partitioned into m chains.

Wait! What’s a partially ordered set? What’s a chain? What’s an antichain?

7 Some other related theorems

What if we don’t restrict ourselves to bipartite graphs? For example, suppose we have a collection
of students and a dormitory and we have to partition them into pairs of roommates. The students
are the vertices of a graph, and there’s an edge between pairs of students if they are both willing
to be roommates with each other.

Theorem 8 (Tutte, 1950) A graph, G = (V,E), has a perfect matching if and only if for every
subset U of V , the subgraph GU has at most |U | odd components (connected components having an
odd number of vertices).

A special case is when every student has exactly 3 possible roommates – all you need in this
case is that there’s always at least two paths of edges between any two points (that is, every edge
belongs to at least one cyclical path, i.e. no edge is a “bridge” whose removal would disconnect
two components of the graph).

Theorem 9 (Petersen, 1891) Every 3-regular, bridgeless graph has a perfect matching.

This was proven long before Tutte’s theorem, but is usually proven as a corollary to it.
Actually Hall’s theorem is also a special case of Tutte’s theorem.

8 Unsolved problem

Problem 10 [Unsolved, cycle double cover conjecture] Does every bridgeless graph have a multiset
of cycles covering every edge exactly twice?
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