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Abstract

In this article we give a modern, pedagogical, streamlined proof of one
of the simplest non-trivial classification theorem in mathematics. Namely,
we classify matricies with non-negative integer coefficients whose matrix
2-norm is less than two using A-D-E Dynkin diagrams. We then use this
toy model to demonstrate the key features and subtleties of classification
theorems.

“One must not be childishly repelled by the examination of the hum-
bler animals, for in all things of nature there is something wonderful”
- Aristotle
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1 Introduction

The classification of finite simple groups is widely considered one of the deepest
theorems ever proved in mathematics. It states that every finite group with no
proper non-trivial normal subgroups will be isomorphic to either an element of
one of eighteen infinite families, or to one of twenty seven “sporadic” groups.

Understanding classification theorems is often seen as a daunting task: even
the statement of the classification of finite simple groups is quite complicated.
The proofs also tend to be extremly long, requiring large amounts of casework.
The proof of the classification of finite simple groups consists of tens of thousands
of pages across hundreds of journal articles. The proof is so complicated, in fact,
that in 1983 Daniel Gorenstein announced the completion of the classification
only to discover that he was misinformed about the status of the “quasithin”
case. The now accepted announcement of the completion of the classification
came over twenty years later, in a 2004 article of Michael Aschbacher [Asc04].

The bulk of the finite simple groups are the so-called finite simple groups
of Lie type. They come from finite dimensional simple Lie algebras, objects
which themselves admit a classification theorem. The classification of finite
dimensional simple Lie algebras is much simpler, but it still requires a large
amount of deep theory and case work [GG20].

In this article, we seek to demonstrate the general principles of the classifi-
cation using the simplest non-trivial example. Namely, we classify matricies M
satisfying the following properties:

1. M has non-negative integer coefficients,

2. MT = M , where MT denotes the transpose of M ,

3. M has all zeros on its diagonal,

4. All eigenvalues of M are of absolute value less than 2.

We offer some commentary about these conditions. Property (1) gives the
setting of this probelm - we are proving a theorem about non-negative integer
matricies. Properties (2)-(3) are technical conditions, which are unimportant.
In fact, they can be removed by introducing extra structure - we go through
this in Appendix A. We include these conditions for now because they make
the problem simpler, and all of the key ideas are still demonstrated. Property
(4) gives the problem all of its flavour. Without it, the classification is triv-
ial. Namely, matricies are classified by their coefficients and properties (1)-(3)
restrict the possibilities for the coefficients in immediately obvious ways. It is
property (4) that makes this a linear algebra problem, and makes the solution
interesting.

The general outline for the classification is as follows. Just like we only clas-
sify groups up to isomorphim, we only classify matricies up to a specified notion
of equivalence. We then define a simple way of breaking down matricies into
“irriducible” chunks. We then find that irriducible matricies, up to equivalence,
are in one to one correspondance with graphs of the following type:
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A` = ...

` vertices

D` = ...

`− 2 vertices

(` ≥ 1)

(` ≥ 4)

E` =

...

`− 3 vertices

(` = 6, 7, or 8)

The connection between graphs and matricies is that every graph can be
given an adjacency matrix. The rows and collumns are labeled by verticies.
The (v, w) entry is 1 if there is an edge between v and w and zero otherwise.
The conditions (1)-(3) are exactly what is needed to guarantee that some matrix
is the adjacency matrix of a “simple” graph.

The structure of this classification is very typical. There are a few (in this
case, two) infinite families, and a few (in this case, three) exceptional objects
which don’t fit into any infinite family. In turns out that there are a large
number of objects across mathematics which are classied in terms of these exact
same graphs. These are known as A-D-E classifications. A sample of objects
that follow A-D-E classifications are listed below:

1. Platonic solids [VH02],

2. Representations of quivers [Bri08],

3. Special types of singularities of algebraic hypersurfaces [DV34],

4. Coxeter groups generated by reflections [Hum92],

5. Certain 2-dimensional conformal field theories [CZ09],

6. and many more [Sie14].

The number of A-D-E classifications led Vladimir Arnold [Arn76] to pose
the following question: why are so many things classified by the same graphs?
This was stated in the survey article [HHSV77] as follows:

“The problem is to find the common origin of all the A-D-E classi-
fication theorems and to substitute a priori proofs for a posteriori
verifications of the parallelism of the classifications”

- Hazewinkel-Hesselink-Siersma-Veldkamp.
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Roughly, the classification theorem given in this paper is the answer to the
above question. In all A-D-E situations, your data can be somehow represented
as matricies with non-negative integer coefficients and small eigenvalues. You
will need a bit more data than just a matrix, but this will just correspond to
adding a few extra infinite families or exceptional graphs to your classification.

The structure of this paper is as follows:
In Section 2, we give background for the main theorem and state it precisely.

This includes discussion of all the components which go into a classification
theorem, and the subtleties that can sometimes occur.

In Section 3, we offer a proof of the main theorem using the theory Frobenius-
Perron eigenvectors.

In Appendix A, we extend the classification to non-symmetric matricies by
introducing bicolorations.

In Appendix B, we compute the size of the largest eigenvalue of the adjacency
matricies of A-D-E graphs.

While surely not a difficult exercise, the classification theorem as stated
here does not appear in literature. The closest work is the first chapter of Jones
et. al’s book [GdLHJ12], which proves the more general theorem we have in
Appendix A. Jones et. al’s proof is in turn inspired by the original work of
Frobenius on the subject [FFF+12]. While certainly a good reference, Jones
et. al’s book leaves many details to references or as exercises to the reader, is
unpedagogical in its approach, and does not emphasise key ideas. It is for this
reason we see it neccecary to give a more modern account which brings to light
this wonderful piece of elementary mathematics.

2 The Main Theorem

2.1 Discussing the axioms

Our goal in this section is to state exactly the main theorem of this paper,
and give appropriate surrounding discussion. Recall that the main theorem is a
classification of matricies M satisfying the following properties:

1. M has non-negative integer coefficients,

2. MT = M , where MT denotes the transpose of M ,

3. M has all zeros on its diagonal,

4. All eigenvalues of M are of absolute value less than 2.

Note in particular that the condition (2) implies that M is square matrix,
so conditions (3)-(4) are well defined.

The point of conditions (1)-(3) is that they are exactly the conditions needed
to make M the adjacency matrix of a simple graph. Here, a graph is a collection
of verticies with edges between them. We will restrict our attention a nice family
of graphs we call simple graphs. A simple graph is a graph Γ satisfying the
following conditions:
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1. Γ has no repeating edges between verticies,

2. Γ has undirected edges,

3. Γ has no edges going from verticies to themselves.

Given a simple graph Γ, we define the adjacency matrix of Γ to be the matrix
whose rows and collumns are labeled by verticies, and whose (v, w) entry is 1 if
there is an edge between v and w and zero otherwise. We give some examples
below:

Γ =

v0 v1 v2
,

adjacency
matrix

=

v0

v1

v2

0 1 0
1 0 1
0 1 0

v0 v1 v2

Γ =

v0 v1 v3
,

adjacency
matrix

=

v0

v1

v2 0 1 0
0 0 1
0 1 0

v0 v1 v2

v2

v4

0 0 1
0 0 0 0

0
1
0
1

0
1
0
1
0

v3

v4

v3 v4

The condition (2) on graphs is equivalent to the condition (2) on matricies.
This is because edges being undirected means there is an edge between v and w
if and only if there is an edge between w and v, so the transpose of the adjacency
matrix is equal to itself.

The condition (3) on graphs is equivalent to the condition (3) on matricies.
This is because if there is no edge going from a vertex to itself the (v, v) entry
is zero for all v. That is, the matrix has zeros on its diagonal.

The condition (1) on graphs, however, is unnececary to imply condition (1)
on matricies. We could have allowed repeating edges, and defined that the (v, w)
entry of the adjacency is equal to the number of edges between v and w. How
can we ever expect to recover matricies satisfying conditions (1)-(3) from simple
graphs, if we cannot create entries that are bigger than 1? The answer lies in
condition (4). It turns out that if any of the entries of the matrix are ≥ 2, then
the largest eigenvalue of M will be at least 2 in absolute value. Hence, we know
that M must only have 0s and 1s as entries and adding condition (1) on graphs
does not lose us any power. We will prove this in the next section.

Seeing as we will be refering to matricies which satisfy conditions (1)-(4)
a lot, we introduce some terminology. We call a matrix satisfying conditions
(1)-(3) and whose entries are all 0 or 1 a simple adjacency matrix. These are
exactly the matricies which appear as the adjacency matricies of simple graphs.
The absolute value of the largest eigenvalue of a matrix is known as its spectral
radius1. In this new lingo, we are in the buisness of classifying simple adjacency
matricies of spectral radius less than 2.

1The spectrum of a matrix refers to its set of eigenvalues, hence the terminology.
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2.2 Equivalence and reducibility

The first step of any classification theorem is to define the correct notion of
equivalence. It is hopeless to classify groups up to equality: we classify them up
to isomorphism. In the case of simple adjacency matricies, we define equivalence
as follows. A permutation of a set is a bijective map from that set to itself. Every
permutation ω : [1...n]→ [1...n] of the first n natural numbers has an associated
permutation matrix Ω. This matrix is defined by setting the (k, ω(k)) entry to
be 1, and all other entries to be 0. Applying a permutation matrix on the right
has the effect of permuting collumns, and applying a permutation matrix on the
left has the effect of permuting the rows.

We say that two simple adjacency matricies M and N are equivalent if there
exists a permutation matrix Ω such that

M = ΩNΩ−1.

In this case, we write M ∼ N . Equivalence can also be viewed graph-
theoretically:

Proposition 1. Let M,N be simple adjacency matricies with associated graphs
ΓM ,ΓN . That is, the verticies of ΓM and ΓN are labeled by the numbers 1...n
and there is an edge between from j to k if and only if the (j, k) entry of the
corresponding matrix is 1.

The matricies M,N are equivalent if and only if there is a graph isomorphism
between ΓM and ΓN . That is, if and only if there is a way of moving verticies
of ΓM onto the verticies of ΓN so that the edges agree.

Proof. Suppose we are given a graph isomorphism from ΓM to ΓN . This means
that every vertex k of ΓM is assigned a vertex ω(k) of ΓN , and there is an edge
from j to k in ΓM if and only if there is an edge from ω(j) to ω(k) in ΓN . This
ω is a permutation, and hence defines a permutation matrix Ω. It is immediate
from doing the calculation that M = ΩNΩ−1.

Conversely, if M = ΩNΩ−1 for some permutation matrix Ω then the un-
derlying permutation ω defines a graph isomorphism ΓM to ΓN in the obvious
fashion. Hence, the proof is complete.

We now turn to the second step of any classification theorem: defining a
notion irriducibility. It is hopeless to classify groups, even up to isomorphism.
We classify simple groups instead. It is here that some classification theorems
hide a big subtelty. Even though one might have classified the basic building
blocks of some type of object, it is not always easy to build things out of those
blocks. For instance, let G be a group and let N be a normal subgroup. The
basic idea is that G is built out of the subgroup N and quotient G/N . However,
we do not neccecarily have that G ∼= N × G/N . Non-trivial extensions of of
N and G/N are very complicated. Thus, we can say we have classifited finite
simple groups but we can not say we have classified finite simple groups.2

2Still, there is some sense in which every group’s structure can be broken up into a unique
collection of simple groups. This is the Jordan-Holder theorem.
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In our case, the notion of reducibility is straightforward. We say that a
simple adjacency matrix M is reducibe if there exist simple adjacency matricies
M1,M2 such that there is an equivalence

M ∼
[

0 M2

M1 0

]
,

where by 0 we indicate a block of zeros of the appropriate size to make M
as well defined matrix. We call a matrix irriducible if it is not reducible. Again,
we can verify that this is the “correct” notion of irriducibility by checking that
is has a nice graph-theoretical analogue:

Proposition 2. Let M be a simple adjacency matrix with associated graph ΓM .
The matrix M is irreducible if and only if ΓM is connected. That is, if and only
if one can go from every vertex on ΓM to every other vertex on ΓM by walking
along edges.

Proof. If a matrix M is reducible into blocks M0 and M1, then it is clear that
the verticies corresponding to the rows containing M0 and the verticies cor-
responing the the rows containing M1 form disconencted components in ΓM .
Conversely, any disconnected graph can be split into two disconnected compo-
nents. The adjacency matricies of these disconnected components will clearly
induce a reduction of M , and thus our proof is complete.

By our definition of reducibility, it is clear that every simple adjacency matrix
can be written in the form

M ∼


0 0 ... Mn

... ... ... ...
0 M2 ... 0
M1 0 ... 0


where M1...Mn are irriducible. Thus, every simple adjacency matrix is built

out of irriducible ones. One still needs to check is that every matrix is uniquely
decomposable in terms of irriducible matricies, so that we can indentify matricies
by naming their constitutent irriducible factors. Mathematically, what we want
to say is the following. If there were a second decomposition for M as

M ∼


0 0 ... M ′n′

... ... ... ...
0 M ′2 ... 0
M ′1 0 ... 0


with M ′1...M

′
n′ irriducible, then

1. n = n′,

2. There is a permutation ω : [1...n]→ [1...n] so that Mn ∼M ′ω(n).
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That is, a block decompositions of simple adjacency matricies are unique up
to permuting factors. Graph theoretically, the uniqueness of the decomposition
is simply the fact that graphs have well defined connected components. More
precisely, let Γ1...Γn be the connected components of ΓM . That is, the subgraphs
of ΓM consisting of clusters of verticies that can be reached from one to another
by walking along edges. Let M1...Mn be the corresponding adjacency matricies
of Γ1...Γn. We have that

M ∼


0 0 ... Mn

... ... ... ...
0 M2 ... 0
M1 0 ... 0

 .
Conversely, every decomposition of M induces a decomposition of ΓM into

connected components. Clearly every way of breaking up ΓM into connected
components will be the same up to permuting the factors, and hence uniqueness
follows.

Up to now we have been ignoring the condition that the spectral radius be
less than 2. In theory this could cause some issues. Namely, we might have
matricies which decompose into smaller simple adjacency matricies, but do not
decompose into smaller adjacency matricies of spectral of spectral radius less
than 2. Seeing as we will now be dealing a lot with spectral radii, we denote
by ‖M‖ the spectral radius of a matrix M . That is, the absolute value of its
largest eigenvalue. The following proposition guarantees that we will get no
issues around decomposing simple adjacency matricies with spectral radius less
than 2:

Proposition 3. Let M be a simple adjacency matrix, with a decomposition

M ∼


0 0 ... Mn

... ... ... ...
0 M2 ... 0
M1 0 ... 0


into (not neccecarily irriducible) simple adjacency matricies M1...Mn. It

holds that

‖M‖ = max{‖M1‖...‖Mn‖}.

In particular, if ‖M‖ < 2 then M decomposes into irriducible blocks which
all satisfy ‖Mk‖ < 2.

Proof. Every vector z has a unique decomposition z =
∑n
k=0 zk, where zk has

non-zero elements only on the collumns corresponding to Mk. M acts by Mk

on each zk. Hence, for z to be an eigenvector for M each zk has to be 0 or
an eigenvector to its corresponding Mk. Moreover, all of the eigenvalues of the
eigenvectors must be the same. In particular, every eigenvalue for M must be
an eigenvalue of one the of the Mks. Conversely, every eigenvalue for one of the
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Mks gives an eigenvalue for M by choosing an Mk-eigenvector and padding it
with zeros. Hence, by the definition of the spectral radius as the maximum over
eigenvalues, our proof is complete.

We have now proven all of the neccecary background results on equivalence
and reducibility.

2.3 The statement

We are now ready to state the main classification theorem:

Theorem 1. Let M be a irriducible simple adjacency matrix of spectral radius
less than 2. M is equivalent to one of the graphs A` for ` ≥ 1, D` for ` ≥ 4, or
E` for ` = 6, 7, or 8, where A`, D`, E` are the graphs pictured in the introduction.

In particular, we find that there are infinitely many irriducible simple ad-
jacency matricies. The vast majority of irriducible simple adjacency matricies
will be part of one of the two infinite families A`, D`, with E6, E7, E8 giving the
three unruly exceptions.

Armed with this classification theorem, it is very easy to prove things about
simple adjacency matricies. All one has to do is first prove your result for
irriducible simple adjacency matricies, and then show that the statement is
preserved as you put matricies together. We demonstrate with an example:

Theorem 2. Let M be a simple adjacency adjacency matrix. If ‖M‖ < 2, then
there exsits n ≥ 3 such that

‖M‖ = 2 cos(π/n).

This is a very surprising theorem. One starts with a seemingly innocuous
situation (symmetric non-negative integer matricies with zeros on the diagonal),
and we find that if the spectral radius is small enough then it has to fall along
some strange discrete sequence of numbers.

Proving this result is very easy once we establish the basics of the theory
of Frobenius-Perron eigenvectors, which we do next section. Frobenius-Perron
theory allows us to efficiently compute the spectral radius of matricies. In par-
ticular, we compute ‖M‖ for every M in the classification theorem of irriducible
simple adjacency matricies. Then, one uses Proposition 3 to find that the spec-
tral radius of any simple adjacency matrix must be the maximum along its
irriducible components, and hence the result follows. These computation are
performed in Appendix B.

Some form of Theorem 2 dates back to a 1857 paper of Kronecker [Kro57],
who proved the key algebraic principle which underlies it. Certainly, his proof
does not make use of any sort of classification. Roughly, they key point is the
following:

Theorem 3 (Kronecker). Let f(x) be a polynomial with integer coefficients. If
all of the roots of f(x) lie on the unit circle (i.e. they have absolute value 1),
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then all of the roots of f(x) are roots of unity (i.e. they are solutions to the
equation xn = 1 for some n ≥ 1).

From this, we get following algebraic corollary:

Corollary 1. Let f(x) be a polynomial with integer coefficients. If all of the
roots of f(x) real and lie in the interval [−2, 2], then all of the roots of f(x) are
of the form 2 cos(πr) for some rational number r.

In particular, the root of f(x) with largest absolute value will be of the form
2 cos(π/n) for some n ≥ 1.

Proof. Since −2 ≤ 2 cos(θ) ≤ 2 for all angles θ, we can write all of the roots of
f(x) has 2 cos(πθ1), 2 cos(πθ2)...2 cos(πθd) where d is the degree of f . Now, we
consider the polynomial g(x) = xnf(x+ 1/x). It can be expanded as follows:

g(x) = xn
d∏
k=1

(x+ 1/x− 2 cos(πθk))

=

d∏
k=1

(x2 − 2 cos(πθk)x+ 1)

=

d∏
k=1

(
x− eπiθk

) (
x+ e−πiθk

)
.

All of the numbers e±πiθk are of absolute value 1, and hence Kronecker’s
theorem applies. That is, all of the e±πiθk are roots of unity so all of the θk are
rational.

The fact that the largest eigenvalue must be of the form 2 cos(π/n) for some
n ≥ 1 follows from general theory. Namely, if f(x) has some root 2 cos(kπ/n)
with k and d relatively prime then it will also have 2 cos(π/n) as a root because
these numbers are Galois conjugates [Was97]. Since |2 cos(kπ/n)| ≤ 2 cos(π/n)
for all integers k, we conclude our result.

Getting Theorem 2 from Corollary 1 is a simple job. Let M be a simple
adjacency matrix. Let fM (x) be its characteristic polynomial. By property (1)
it has integer coefficients, by propety (2) all of its roots are real, and by property
(4) all of its roots lie in the interval (−2, 2). Hence, Kronecker’s theorem applies
and we conclude the result.

Theorem 2 is not only a testament to the power of classification theorems,
but also gives some intuition for why we must require ‖M‖ < 2. When ‖M‖ <
2, the eigenvalues are well-behaved - 2 cos(πr) for rational numbers r - and
presumably will have nice combinatorics coming from this fact. When ‖M‖ = 2,
these nice combinatorics remain essentially intact. In fact, adding two extra
infinite families and a few exceptional graphs the classification can be extended
to the case ‖M‖ = 2. When ‖M‖ > the possible eigenvalues no longer form a
discrete set, and they are much harder to control. It is for this reason one has to
be very careful when constructing toy models, since tweaking paramaters very
slightly can drastically change the results.
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3 The proof

3.1 Discussion and preliminaries

To begin, we give a general outline of the proof. The first step is to understand
eigenvalues and eigenvectors of symmetric non-negative matricies better, mainly
through the Frobenius-Perron theorem. With this in hand we will be able to
easily compute the spectral radius of matricies. This Frobenius-Perron theory
will also allow us to prove a key lemma: if one graph Γ2 contains another graph
Γ1 as a subgraph, then the spectral radius of Γ2 (i.e. the spectral radius of
its adjacency matrix) will be greater than the spectral radius of its subgraph
Γ1. In particular, if a graph has spectral radius < 2 then it cannot contain any
subgraphs of spectral radius ≥ 2.

The rest of the proof is now a fun game. By constructing more and more
graphs with spectral radius ≥ 2, we get tighter and tighter restrictions for what
graphs with spectral radius < 2 can look like, since they cannot contain any of
the graphs we constructed as subgraphs. Eventually, these restrictions will be
so tight that the only possibilities left are the A-D-E ones.

With this general programme established, we now begin with some neccecary
results about eigenvectors/eigenvalues. Our first result is a powerful theorem
which re-frames the spectral radius in a form which does not use eigenvectors.
This will be very useful in our study, since it allows us to get bounds on the
spectral radius without needing to compute eigenvectors. We can only prove
one half however, since the other half is beyond the scope of this paper.

Proposition 4. Let M be an n by n matrix with real coefficients and for which
MT = M . Then,

‖M‖ = max
z∈Cn

‖Mz‖/‖z‖

where

‖z‖ =

√√√√ n∑
k=1

|zk|2

denotes the Euclidean norm of a vector z = (z1...zk).

Proof. Let z0 be an eigenvector with maximal absolute value for M . That is, a
vector for which Mz0 = λz0, |λ| = ‖M‖. Then,

‖Mz0‖/‖z0‖ = ‖λz0‖/‖z0‖ = ‖M‖.

Hence, ‖M‖ ≤ maxz∈Cn ‖Mz‖/‖z‖. The innequality the other direction is
an immediate consequence of the so-called spectral theorem [Hal63].

A first consequence of this theorem is a statement which we asserted without
proof is Section 2. Namely, if a simple adjacency matrix satisfies ‖M‖ < 2 then
all of its entries must be 0 or 1. Suppose for contradiction this were not the
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case. That is, we had a simple adjacency matrix M with ‖M‖ < 2 and its (j, k)
entry was some integer n ≥ 2. Letting z denote the vector whose j entry is 1
and all of whose other entries is 0, we find that

‖Mz‖/‖z‖ = n/1 = n.

In particular, Proposition 4 implies that ‖M‖ ≥ n ≥ 2. This is a contradic-
tion, so we conclude the desired result.

We now move on to the Frobenius-Perron theorem. While seemingly innocu-
ous, it is extremely useful for modeling all sorts phenomina accross pure and
applied mathematics [PSC05].

Theorem 4 (Frobenius-Perron). Let M be an n by n matrix with non-negative
entries. Among the eigenvalues of M with largest absolute value, one of them
is real. That is, there is an eigenvector of M with eigenvalue ‖M‖.

Moreover, there exists a non-negative eigenvector with eigenvalue ‖M‖. That
is, there is an eigenvector z = (z1...zn) with zk ∈ R≥0 whose eigenvalue is ‖M‖.

Moreover, ‖M‖ is the only eigenvalue for which there exists a non-negative
eigenvector. That is, if z is an eigenvector with non-negative components, then
its eigenvalue must be ‖M‖.

We now demonstrate the utility of the Frobenius-Perron theorem by demon-
strating the lemma claimed at the beginning of the section:

Lemma 1. Let Γ2 be a simple graph, and let Γ1 be a subgraph. That is, Γ1 is
a subset of the edges and verticies of Γ2. It holds that ‖M2‖ ≥ ‖M1‖, where
M2,M1 are the adjacency matricies of Γ2,Γ1.

Proof. Adding verticies to a graph does not change its spectral radius, by Propo-
sition 3. Hence, we can restrict to the case that M1 is obtained by removing
some edges from M2. Let z1 be a Frobenius-Perron eigenvector for M1, that
is, an eigenvector with non-negative entries. By construction, all of the coeffi-
cients of M2 are greater than or equal to all of the corresponding coefficients
in M1. Hence, all of the entries of M2z1 are greater than or equal to all of the
corresponding entries of M1z1. Thus,

‖M2‖ ≥ ‖M2z1‖/‖z1‖ ≥ ‖M1z1‖/‖z1‖ = ‖M1‖

as desired.

This completes our linear algebra background. We now have all of the tools
at our disposal to prove the theorem.

3.2 Body of the proof

We now demonstrate Theorem 1. This will follow by constructing graphs of
spectral radius≥ 2, concluding that graphs of spectral radius< 2 cannot contain
them as subgraphs, and repeating until the only possibilities left are the A`, D`

and E`.

12



Before giving any of the constructions, we give some more detail on how
the Frobenius-Perron theorem is useful for computing spectral radii. The first
step is to observe that given a graph Γ, collumn vectors are constructed by
assigning a complex number to each collumn. Collumns are labeled by verticies
of Γ, and hence specifying a vector amounts to specifying a complex number to
each vertex. To compute the spectral radius of graph, all we have to do thus is
the following. First, we assign positive real numbers to each vertex. Then, we
prove that the vector specified is an eigenvector, and we compute its eigenvalue.
The Frobenius-Perron theorem assures us that this computed eigenvalue is the
spectral radius.

To begin, we prove a proposition which allows us to easily multiply vectors
by adjacency matricies:

Proposition 5. Let Γ be a graph, with set V of verticies and adjacency matrix
MΓ. Given any vector z = (zv)v∈V , we have that

MΓz =

( ∑
w connected to v

zw

)
v∈V

.

That is, multiplying by the adjacency matrix has the effect of replacing the
value at every vertex by the sum of the values at all of its neighboring verticies.

Proof. Given v, w ∈ V , denote by ev,w to quantity which is 1 if there is an
edge between v and w and 0 otherwise. These are exactly the coefficients of the
adjacency matrix. Standard multiplication rules tell us that

MΓz =

(∑
w∈V

ev,w · zw

)
v∈V

.

Thus, the v entry of MΓz is exactly the sum of the w entries for every w
connected to v, as claimed.

Our first construction demonstrates the procedure very nicely, and shows
that graphs of spectral radius < 2 cannot contain any loops:

Lemma 2. Define the graphs

`+ 1 vertices

A
(1)
` = (` ≥ 2)1

1
1

1
1

where the 1s on verticies specify non-negative vectors. These vectors are

eigenvectors for the A
(1)
` with eigenvalue 2. In particular, simple adjacency

matricies with spectral radius < 2 cannot contain any loops.
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Proof. By Proposition 5, multiplying by the adjacency matrix has the effect of
replacing the value at a vertex by the sum of its neighbors. Since every vertex
has two neighbors which are both labled by 1, every vertex will be replaced by
2. Hence, the all 1s vector will be sent to the all 2s vector. Thus, the all 1s
vector is an eigenvector with eigenvalue 2 as claimed.

Our second constuction demonstrates that graphs of spectral radius < 2
cannot contain points of order four or more (i.e. verticies with ≥ 4 edges leaving
them), and that they can contain at most one point of order 3:

Lemma 3. Define the graphs

`− 3 vertices

D
(1)
` = ...

1

1

2 2 2

1

1 (` ≥ 4).

The non-negative values at the verticies of D
(1)
` specify eigenvectors with

eigenvalue 2. In particular, simple adjacency matricies with spectral radius < 2
cannot contain any points of order 4 (since then they would contain a copy of

D
(1)
4 ) and they cannot contain more than one point of order 3 (since then they

would contain a copy for D
(1)
` for ` ≥ 5).

Proof. All of the center verticies have two neighbors, both of which are labeled
by 2. Hence their original value of 2 gets changed to the new value of 4 after
being multiplied by the adjacency matrix by Proposition 5. The verticies on
the edge of the central strip have two neighbors labeled by 1 and one neighbor
labled by 2, and hence they get sent to 4 as well. The verticies on the boundary
have one neighbor labled by 2, and hence their original value of 1 gets sent to
2.

All of values at the verticies thus are multiplied by 2, so the specified vector
is an eigenvector with eigenvalue 2 as claimed.

We have already drastically reduced our search. Irriducible simple adjacency
matricies cannot have loops, cannot have points of order ≥ 4, and have at most
one point of order 3. That is, they must be of the form

Ta,b,c =

a vertices

...

... ...

b vertices

c vertices

for some a, b, c ≥ 0. If any of the values a, b, c are equal to 0, then Ta,b,c will
be isomorphic to a straight line, and hence be isomorphic to A` for some ` ≥ 1.
Thus, we are left with examining the case that a, b, c ≥ 1. If two of the values

14



a, b, c are equal to 1, then we are in the case D` for some ` ≥ 4. Thus, we are
left with the case that a, b, c ≥ 1, and at most one of the a, b, c are equal to 1.
With one more computation, we are already in a position to conclude that there
are finitely many exceptional irriducible simple adjacency matricies:

Lemma 4. Define the graph

E
(1)
8 =

2 4 6 5 4 3 2 1

3

The non-negative values at the verticies of E
(1)
8 specify an eigenvector with

eigenvalue 2. In particular, if a ≥ 1, b ≥ 2, and c ≥ 2, then if any one of a, b or
c is ≥ 5 then the graph Ta,b,c has spectral radius ≥ 2. In particular, there are
finitely many triples (a, b, c) with a ≥ 1, b ≥ 2, and c ≥ 2 such that Ta,b,c has
spectral radius < 2.

Proof. Using Proposition 5 to compute the action of the adjacency matrix, this
follows by a straightforward computation.

We are thus essentially done with our classification. Every irriducible simple
adjacency matrix will be of the form A`, D`, or Ta,b,c for one of the finitely
many triples (a, b, c) with a ≥ 1, b ≥ 2, c ≥ 2, a, b, c,≤ 4. Computing with the
given eigenvector, we find that the graph

E
(1)
6 =

1 2 3 2 1

2

1

has spectral radius 2, and hence a = 1. Next,

E
(1)
7 =

2 3 4 3 2 1

2

1

has spectral radius 2 as well, and hence either b = 2 or c = 2. Thus, the
only possibilities are T1,2,2 = E6, T1,2,3 = E7, or T1,2,4 = E8. We are now done
with the proof of Theorem 1.

A Extension to non-symmetric matricies

In this section we discuss an extension of this classification to non-symmetric
matricies. In fact, with this symmetry condition removed, we can even extend
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the classification to non-square matricies. The spectral radius is no longer de-
fined in such generality since non-square matricies do not have eigenvecrors.
Given an n by m matrix M , the quantity

max
z∈Cn

‖Mz‖/‖z‖

is still defined, however. By Proposition 4 this will agree with the spectral ra-
dius in the real symmetric case. Thus, we now define ‖M‖ = maxz∈Cn ‖Mz‖/‖z‖.
We will classify matricies with non-negative integer coefficients such that ‖M‖ <
2.

It is important to note that if M is a non-real or non-symmetric the spectral
radius of M is still well defined but it may not be equal to ‖M‖. Hence, this new
definition of ‖M‖ disagrees with our old one in some cases, though this should
not cause any confusion because all of our matricies before were real symmetric.
We refer to ‖M‖ as the matrix 2-norm.

The key insight is that given any matrix M , one can create a symmetric
matrix with zeros along the diagonal by the formula

Msq =

[
0 M
MT 0

]
.

If M is an an n by m matrix then Msq is an n + m by n + m matrix. If
M has real entries then so will Msq. If we know that ‖M‖ < 2, then the below
proposition allows us to conclude that ‖Msq‖ < 2. This is very useful, since it
will allow us to apply our classification theorem for symmetric matricies with
zeros along the diagonal.

Proposition 6. Let M be a matrix with real coefficients, and let Msq be as
above. It holds that ‖M‖ = ‖Msq‖.

Proof. By our same argument about block matricies in Proposition 3, we find
that ‖Msq‖ = max{‖M‖, ‖MT ‖}. Now, it is standard to see that ‖M‖ = ‖MT ‖
so our proof is complete.

The classification theorem for simple adjacency matricies is not enough to
deduce the general case yet. The issue is that multiple different matricies M
could give equivalent irriducible matricies Msq. Hence, we introduce some extra
information on the graph of Msq which allows us to distinguish these different
origins. This extra information is a bicoloration.

To any matrix M all of whose coefficients are 1 or 0, we associate a bicolored
graph ΓM as follows. There are black verticies for every collumn of M and white
verticies for every row of M . Given a row index i and a collumn index j, we
put an edge connecting the black vertex corresponding to i and the white vertex
corresponding to j if the (i, j)th entry of M is 1. We give an example below:

w0
w1 w2

,M =

w0

w1

w2

1 0
1 1
0 1

b0 b1

associated
graph =

b0 b1
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It is simple to check that the bicolored graph attached to M and the un-
colored graph attached to Msq have the same underlying set of verticies and
edges.

As with any classification theorem, we now have to introduce the correct
notion of equivalence. Our previous notion will not suffice because, given an n
by m matrix M and an n by n permutation matrix Ω, the dimensions don’t line
up for the matrix multiplication ΩMΩ−1 to go through. Instead, we have to
choose an n by n permutation matrix for the left and an m by m permutation
matrix for the right. Formally, we say that two n by m matricies M,N are
pseudo-equivalent if there exists an n by n permutation matrix Ωn and an m
by m permutation matrix Ωm such that

M = ΩnNΩm.

We now give a graph theoretic interpretation of pseudo-equivalence:

Proposition 7. Let M,N be matricies of the same dimensions with all coeffi-
cients 0, 1. M and N are pseudo-equivalent if and only if the associated graphs
ΓM ,ΓN are isomorphic as bicolored graphs. That is, there is a way of mapping
the black verticies of ΓM onto the black verticies of ΓN and the white verticies
of ΓM onto the white verticies of ΓN such that all of edges agree.

Proof. Suppose we have a pseudo-equivalence M = ΩnNΩm. The underlying
permutation ωn of Ωn specifies a way of permuting the black verticies of M onto
the black verticies of N , and the underlying permutation ωm of Ωm specifying a
way of permuting the white verticies ofM onto the white verticies ofN . The fact
that M = ΩnNΩm guarantees that edges will line up, and we get a well defined
isomorphism of bicolored graphs. Conversely, the permutations of black/white
verticies given by an isomorphism of bicolored graphs give exactly the right data
to specify a pseuo-isomorphism of matricies so our proof is complete.

We call a matrix with all coefficients 0, 1 pseudo-irriducible if its associated
graph is connected. This again has an interpretation on the level of matricies
and block decompostions: we leave the exact statement as an exercise to the
reader.

With all of these definitions out of the way, we can state our classification
theorem.

Theorem 5. Let M be a pseudo-irriducible matrix with non-negative integer
coefficients such that ‖M‖ < 2. M is pseudo-equivalent to one of the graphs A`
for ` ≥ 1, D` for ` ≥ 4, or E` for ` = 6, 7, 8, equipped with a bicoloration.

Proof. Our conditions imply that ‖Msq‖ satisfies the conditions for the classifi-
cation of Theorem 1. Hence, the graph corresponding to M will be isomorphic
(as an uncolored graph) to one of the A`, D`, or E`. This means that the graph
corresponding to M will be isomorphic as a bicolored graph to some bicoloration
of these, completing the proof.
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Some might find the above theorem unsatisfying. It pushes the question
back to classifying the possible bicolorations on the A`, D`, E`. However, there
is a crucial observation to be made: on a given connected graph, there are at
most two bicolations. Upon coloring the first vertex black or white, all of the
verticies connecting to it must have opposite color since there cannot be edges
between two verticies of the same color. Pushing our way through the graph,
this shows that coloring a single vertex forces the colors of all the other verticies.

There is still the issue that a-priori different bicolorations on a graph could
happen to be isomorphic as bicoled graphs. For instance, the two colorings

,

on A2 are isomorphic as bicolored graphs. In fact, we see that A` will always
have a unique bicoloration when ` is even. When ` is odd, there are two non-
isomorphic bicolorations based on whether the endpoints of the segment are
black or white. All in all, we find that there are now five infinite families of
pseudo-irriducible matricies with matrix norm less than 2:

1. A` for ` ≥ 2 even, equipped with its unique bicoloration,

2. A` for ` ≥ 1 odd, bicolored so it’s endpoints are black,

3. A` for ` ≥ 1 odd, bicolored so it’s endpoints are white,

4. D` for ` ≥ 4, bicolored so it’s two-pronged side is white,

5. D` for ` ≥ 4, bicolored so it’s two-pronged side is black.

Each of the E6, E7, E8 have two non-isomorphic bicolorations, and hence
there are six exceptional pseudo-equivalence calsses of matricies with non-negative
coefficients and matrix norm less than 2. This completes the explicit description
of the classification

B Computing spectral radii of A`, D`, and E`

While Theorem 1 as stated has been proved, one key subtlety has been over-
looked: we did not prove that A`, D`, and E` actually have spectral radius less
than 2! Perhpas the classification is even smalller than what we gave. We com-
pute the A-D-E spectral radii now, to show they are all < 2. Note that by these
computations we will also arrive at a proof of Theorem 2, for which we asserted
that the spectral radii of the A-D-E graphs are all of the form 2 cos(π/n) for
some n ≥ 3.

Proposition 8. For any ` ≥ 2, the quantites
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...
sin
(

π
`+1

)
sin
(

2π
`+1

)
sin
(

(`−1)π
`+1

)
sin
(
`π
`+1

)
specify a non-negative eigenvector for A`. These eigenvectors have eigen-

value 2 cos(π/(` + 1)). Hence, A` has spectral radius 2 cos(π/(` + 1)) for all
` ≥ 2.

Proof. Using Proposition 5 to compute the action on the adjacency matrix, we

find that the entry labled sin
(
kπ
`+1

)
will get sent to

sin

(
(k − 1)π

`+ 1

)
+ sin

(
(k + 1)π

`+ 1

)
= 2 cos

(
π

`+ 1

)
sin

(
kπ

`+ 1

)
,

where the above equality uses the angle addition formula for sine. This is
exactly the statement that the specified vector is an eigenvector with eigenvalue

cos
(

π
`+1

)
, so we are done.

Next, we move on to the infinite family D`:

Proposition 9. For any ` ≥ 4, the quantities

...

1/2

1/2

sin
(

(`−2)π
2`−2

)
sin
(

(`−3)π
2`−2

)
sin
(

2π
2`−2

)
sin
(

π
2`−2

)
specify a non-negative eigenvector for D`. These eigenvectors have eigen-

value 2 cos(π/(2`)). Hence, D` has spectral radius 2 cos(π/(2`)) for all ` ≥ 4.

Proof. This follows from a straightforward use of trigonometric identities.

Finally, we compute the spectral radii of the three exceptional graphs:

Proposition 10. The spectral radii of E6 is 2 cos(π/12), the spectral radius of
E7 is 2 cos(π/18), and the spectral radius of E8 is 2 cos(π/30).

Proof. Frobenius-Perron eigenvalues can be given, but they are very big. It is
important to note that for a given graph, computing the spectral radius is not
a guess and check process. By factoring the charactaristic polynomial one can
deterministically find all of the eigenvalues, and then take the maximum. Doing
this for the characteristic polynomials of E6, E7, E8 we arrive at the spectral
radii given.

This completes our calculations.
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