Modular Arithmetic II: Using Math to Send Passwords

BMC Int I Fall 2023

September 20, 2023

1 Last Week Review

Exercise 1.1. What is the remainder when 2^{304} is divided by 7? **Exercise 1.2.** What are the last two digits of 3^{2004} ?

Exercise 1.3. What is the remainder when $9 \times 99 \times 999 \times \cdots \times 99 \cdots 9$ is divided by 1000?

2 Inverses

Theorem 2.1. If (a, n) = 1 are relatively prime, then there exist x, y such that ax + ny = 1.

Exercise 2.2. Show that if (a, n) are relatively prime, then there is a number $\frac{1}{a} \pmod{n}$ so that $a \cdot \frac{1}{a} \equiv 1 \pmod{n}$.

Exercise 2.3. What is $\frac{1}{3} \pmod{7}?\frac{1}{6} \pmod{25}?$

Exercise 2.4. Prove that if $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p-1}$ is written as a fraction with p > 3, then p^2 divides the numerator.

3 Combining Different Moduli

Theorem 3.1. If $n \equiv a_1 \pmod{m_1}, \ldots, n \equiv a_k \pmod{m_k}$ with m_1, m_2, \ldots, m_k all sharing no common factors, then we can combine these equivalences to $n \equiv A \pmod{m_1 m_2 \ldots m_k}$.

Exercise 3.2. Find x such that $x \equiv 0 \mod 2$ and $x \equiv 0 \pmod{5}$.

Exercise 3.3. Find all x such that $x \equiv 3 \pmod{4}$ and $x \equiv 2 \pmod{7}$.

Exercise 3.4. Find all x such that $x \equiv 1 \pmod{3}$ and $x \equiv 0 \pmod{7}$.

Exercise 3.5. Find all x such that $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, and $x \equiv 0 \pmod{5}$.

Exercise 3.6. Find the smallest positive x such that x is a multiple of 5, x + 1 is a multiple of 7, x + 2 is a multiple of 9, and x + 3 is a multiple of 11.

Exercise 3.7. What are the last two digits of 26^{2023} ?

Exercise 3.8. What are the last three digits of 12^{101} ?

4 RSA Encryption

Exercise 4.1. Suppose that p, q are two prime numbers. Show that for any a relatively prime to p, q that $a^{(p-1)(q-1)} \equiv 1 \pmod{pq}$.

Exercise 4.2. In RSA encryption, the numbers N = pq and e are told to everyone. To send a message a, send $a^e \pmod{N}$. Suppose that you receive the message $m \pmod{N}$, how to you decrypt it to get a back?

Exercise 4.3. Take p = 11, q = 17, e = 7. Then to send the secret number 42, what number do you send back? And how do you decrypt it?