Modular Arithmetic II: Using Math to Send Passwords

 BMC Int I Fall 2023September 20, 2023

1 Last Week Review

Exercise 1.1. What is the remainder when 2^{304} is divided by 7 ?
Exercise 1.2. What are the last two digits of 3^{2004} ?
Exercise 1.3. What is the remainder when $9 \times 99 \times 999 \times \cdots \times 99 \cdots 9$ is divided by 1000 ?

2 Inverses

Theorem 2.1. If $(a, n)=1$ are relatively prime, then there exist x, y such that $a x+n y=1$.
Exercise 2.2. Show that if (a, n) are relatively prime, then there is a number $\frac{1}{a}(\bmod n)$ so that $a \cdot \frac{1}{a} \equiv 1(\bmod n)$.
Exercise 2.3. What is $\frac{1}{3}(\bmod 7) ? \frac{1}{6}(\bmod 25)$?
Exercise 2.4. Prove that if $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}$ is written as a fraction with $p>3$, then p^{2} divides the numerator.

3 Combining Different Moduli

Theorem 3.1. If $n \equiv a_{1}\left(\bmod m_{1}\right), \ldots, n \equiv a_{k}\left(\bmod m_{k}\right)$ with $m_{1}, m_{2}, \ldots, m_{k}$ all sharing no common factors, then we can combine these equivalences to $n \equiv A\left(\bmod m_{1} m_{2} \ldots m_{k}\right)$.
Exercise 3.2. Find x such that $x \equiv 0 \bmod 2$ and $x \equiv 0(\bmod 5)$.
Exercise 3.3. Find all x such that $x \equiv 3(\bmod 4)$ and $x \equiv 2(\bmod 7)$.
Exercise 3.4. Find all x such that $x \equiv 1(\bmod 3)$ and $x \equiv 0(\bmod 7)$.
Exercise 3.5. Find all x such that $x \equiv 1(\bmod 2), x \equiv 2(\bmod 3)$, and $x \equiv 0(\bmod 5)$.
Exercise 3.6. Find the smallest positive x such that x is a multiple of $5, x+1$ is a multiple of 7 , $x+2$ is a multiple of 9 , and $x+3$ is a multiple of 11 .
Exercise 3.7. What are the last two digits of 26^{2023} ?
Exercise 3.8. What are the last three digits of 12^{101} ?

4 RSA Encryption

Exercise 4.1. Suppose that p, q are two prime numbers. Show that for any a relatively prime to p, q that $a^{(p-1)(q-1)} \equiv 1(\bmod p q)$.

Exercise 4.2. In RSA encryption, the numbers $N=p q$ and e are told to everyone. To send a message a, send $a^{e}(\bmod N)$. Suppose that you receive the message $m(\bmod N)$, how to you decrypt it to get a back?

Exercise 4.3. Take $p=11, q=17, e=7$. Then to send the secret number 42, what number do you send back? And how do you decrypt it?

