Modular Arithmetic I: Algebraic Cycles

BMC Int I Fall 2023

September 13, 2023

1 Cycling Remainders

Exercise 1.1. Define a sequence a_{n} by $a_{1}=1$ and $a_{n+1}=3^{a_{n}}$. What are the last two digits of a_{100} ?

Definition 1.2. We say that $a \equiv b(\bmod n)$ if $n \mid a-b$, or n divides the difference $a-b$.
Exercise 1.3. Show that $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then which of the following are true:

- $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$;
- $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$;
- $a_{1} / a_{2} \equiv b_{1} / b_{2}(\bmod n)$;
- $a_{1}^{a_{2}} \equiv b_{1}^{b_{2}}(\bmod n)$.

For the ones that are not always true, are they true if we impose some conditions on a, b, n ?
Exercise 1.4. Prove that $1^{n}+2^{n}+\cdots+(n-1)^{n}$ is divisible by n for any odd $n>1$.
Exercise 1.5. What is the remainder $2^{2023}(\bmod 3)$ and $2018^{2020}(\bmod 2019)$? What about 3^{1995} $(\bmod 5)$ and $4^{2041}(\bmod 14)$?

Exercise 1.6. Calculate $3 n(\bmod 7)$ for $n=1,2,3,4,5,6$. What do you notice? What is 3^{6} $(\bmod 7)$?

Theorem 1.7. If p is a prime number and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.
Exercise 1.8. Let $\phi(n)$ denote the number of integers small than n that are relatively prime to n. What is $\phi(10)$? What is $3^{\phi(10)}(\bmod 10)$?

Exercise 1.9. What is $\phi(27) ? \phi(40) ? \phi(100)$?
Exercise 1.10. Define a sequence a_{n} by $a_{1}=1$ and $a_{n+1}=3^{a_{n}}$. What are the last two digits of a_{100} ?

Exercise 1.11. Does the sequence defined by $a_{1}=k, a_{n+1}=k^{a_{n}}$ eventually become constant mod m ? Show it by following the three steps:

1. Show that the sequence $a_{n}(\bmod m)$ is eventually cyclic (it repeats in a cycle)
2. Now assume that this is not true for some m, k. Let M be the smallest such m that this is not true. What can we say about the numbers $b_{i}(\bmod \phi(M))$ defined as $a_{i}=k^{b_{i}}$.
3. Conclude that we get a contradiction and no such (m, k) exists.

Exercise 1.12. Show that there exists an m such that $\frac{2^{m}-m}{2023}$ is an integer.
Exercise 1.13. Show that there exists an m such that $\frac{2^{m}+3^{m}+5^{m}-m}{235}$ is an integer.

