Modular Arithmetic I: Algebraic Cycles

BMC Int I Fall 2023

September 13, 2023

1 Cycling Remainders

Exercise 1.1. Define a sequence a_n by $a_1 = 1$ and $a_{n+1} = 3^{a_n}$. What are the last two digits of a_{100} ?

Definition 1.2. We say that $a \equiv b \pmod{n}$ if $n \mid a - b$, or n divides the difference a - b.

Exercise 1.3. Show that $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then which of the following are true:

- $a_1 + a_2 \equiv b_1 + b_2 \pmod{n};$
- $a_1a_2 \equiv b_1b_2 \pmod{n}$;
- $a_1/a_2 \equiv b_1/b_2 \pmod{n};$
- $a_1^{a_2} \equiv b_1^{b_2} \pmod{n}$.

For the ones that are not always true, are they true if we impose some conditions on a, b, n?

Exercise 1.4. Prove that $1^n + 2^n + \cdots + (n-1)^n$ is divisible by n for any odd n > 1.

Exercise 1.5. What is the remainder $2^{2023} \pmod{3}$ and $2018^{2020} \pmod{2019}$? What about $3^{1995} \pmod{5}$ and $4^{2041} \pmod{14}$?

Exercise 1.6. Calculate $3n \pmod{7}$ for n = 1, 2, 3, 4, 5, 6. What do you notice? What is $3^6 \pmod{7}$?

Theorem 1.7. If p is a prime number and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Exercise 1.8. Let $\phi(n)$ denote the number of integers small than n that are relatively prime to n. What is $\phi(10)$? What is $3^{\phi(10)} \pmod{10}$?

Exercise 1.9. What is $\phi(27)$? $\phi(40)$? $\phi(100)$?

Exercise 1.10. Define a sequence a_n by $a_1 = 1$ and $a_{n+1} = 3^{a_n}$. What are the last two digits of a_{100} ?

Exercise 1.11. Does the sequence defined by $a_1 = k$, $a_{n+1} = k^{a_n}$ eventually become constant mod m? Show it by following the three steps:

- 1. Show that the sequence $a_n \pmod{m}$ is eventually cyclic (it repeats in a cycle)
- 2. Now assume that this is not true for some m, k. Let M be the smallest such m that this is not true. What can we say about the numbers $b_i \pmod{\phi(M)}$ defined as $a_i = k^{b_i}$.
- 3. Conclude that we get a contradiction and no such (m, k) exists.

Exercise 1.12. Show that there exists an m such that $\frac{2^m - m}{2023}$ is an integer.

Exercise 1.13. Show that there exists an m such that $\frac{2^m + 3^m + 5^m - m}{235}$ is an integer.