Harmonic Oscillators

Why *everything* is a spring (approximately)

Kyle Devereaux UC Berkeley

BMC Upper-Advanced Session October 18, 2023

BERKELEY MATH CIRCLE

Outline

- > What is a spring (mathematically)
 - Force, Newton's second law
 - Hooke's law
 - Linear homogenous second order ODEs
- > Simple harmonic oscillator solution
 - Ansatz
 - Sin and cos
 - Complex numbers
 - Initial conditions
- ► BREAK
- ► Everything is a spring
 - Quadratic potential
 - Complex potential energy distributions
 - Taylor expansions
- ► Examples
 - Pendulum
 - Molecules

Force and Newton's second law

Force and Newton's second law

Hooke's Law

Combining Newton's and Hooke's Laws

The spring "equation of motion"

This is a ...

Combining Newton's and Hooke's Laws

The spring "equation of motion"

This is a ...

"Linear Homogenous Second Order Ordinary Differential Equation"

livear = highest pour of x is]. homogenous = livear in the way derivatives/variables are combined second order = highest derivative power is 2. $\frac{d^2x}{dt^2}$ ordinary = only 1 independent variable $x_{2}x(t)$. diff eq = independent variable is stuck in derivative! \rightarrow how do we golve for it?

Solving the equation

we need an "ansatz" or "gress" d^2x dt^2 m -> what are functions The spring "equation of motion" that when you difformationte = - Aws: n (wf+S) twice, you get back? dix = - Aw Cos(wf+S) (up to some constants) $P_{m}^{lug} - Aw^{2}\cos(w+FS) = -\frac{\kappa A}{m}\cos(w+FS)$ frig functions! Aw = KA $w = \sqrt{\frac{\kappa}{m}}$ $(X(t) = A\cos(\sqrt{\frac{\kappa}{m}}t + S))$ (wess: X(t)= Acos(wt+S) "anguior frequercy"

Solution using complex numbers

Initial conditions

 $X(t) = A \cos(\int_{m}^{K} t + g)$ what one tresc constants! "the Golution of an n-th ordurr linear diff eq, will have n unknown variables" These are found friengh "inidial conditions": 1. position Xo at a time to 2. velocity vout a time to usually starting position and webcity

Initial conditions

Break timeeeee

Break timeeeee

Why *everything* is a spring (approximately)

Potential energy

Complex potential energies

Kopff

Halley

Complex potential energies

Kopff

Halle

Why everything is a spring

Taylor expand at the potential minima!!!

Why everything is a spring

Taylor expand at the potential minima!!!

Why everything is a spring

Taylor expand at the potential minima!!!

Pendulum

Pendulum

Interatomic interactions

Interatomic interactions

- Harmonic oscillators show up in many places in physics
- Very accurate approximations of wide variety of systems
- ➤ Sill many systems where the approximation falls apart

