- Codes Strouse, grad student at vc Davis undergrad at Berkeley
- A historical problem

The pregel river r an through Konigs berg, prussia. In it, Fere were two large islands connected to each other $\&$ the mainland by 7 bridges.
let's draw a picture:

The proplemi can we come up with a walk (path) passing each bridge EXACTLY once? TRY THIS!!! 4 \& end up where we started?

Euler tried to solve this problem, concluding his work in 1736 . [old problem]

His main struggle was coming Up with an appropriate tool to study the problem with.

Euler's new tool was early Graph theory

So what is a graph?
You may nate drapted equations in school, so when you hear "graph", you think of

$$
y=x^{2}
$$

$$
y=2 x+1
$$

∂R

The lospe of graph we define to day is simpler $\$$ tess rigid.

Before we tackle our first problem, I really want you to get familiar with our new tool.

Def: Graph
A Graph (Denoted $G(V, E)$) is a collection of vertives (nodes) V, \& a set of edges E_{1} Each edge is associated with f OR 2 vertives, called end points.

This is effectively connect the dots on a grand scale.

But lets look at some examples.?

- Ex I)
 is the salve

Moral A Graph is just nodes \& connections.
tEx)
is the same Nr^{2}
\& both are acceptable graph:

Morali Not all vertices need to be connected.
H ESCALATION:
is a valid graph althouth it is more fruitful to analyze these two Separately.

- $E \times 3$)
 is a graph.

Note there is no node where the "middle segments" cross this is okay.

Moral: edges can cross without haring a node.

Ex 4) [NON EX]
is NOT a graph: edges must hare 2 end points!

But now then, as in our Definition, can an edge be associated with exactly one node?

Loops! O is a valid graph!

Ex 5) complicating things:
is a valid graph!
i.e. two nodes may be connected by multiple edges.

We are now ready to dive in to the world of grapes.

- TRy i Take a minute \& try to come up with 3 valid graphs.
4 Think about what sort of "graph" properties you see. 4 come up to the board \& draw some!
~ Graph Terminology ~
Defi A as acenti
Two vertiles $a \& b$ in a graph $G(v, E)$ are adjacent (or reign bors) if a \& b are the endpoints of some
edge in F_{1} we say such an edge is incident with a \& b \$ that it connects $a \$ b$.

Def: Degree:
The deg nee of a vertex is the number of edges incident with it WE COUNT LOOPS TWICE, If V is a vertex, we say thad the degree of V is $\operatorname{deg}(V)$.
1)

2)

[What is the degree of each vertex here? $\Rightarrow A S h!$

It t urns out the degree of a graph will be a keg fact. Ret's study it!

In particular, the sum of the deg nee of a graph has special properties.
lat $V=$ §vertives of our graph 3 Then $\sum_{V \in V}$ deg(r) is the som of our deg lees,
for 1) it ${ }^{\prime}$'s $2+4+4+1+3+4+0$

$$
=18=2.9
$$

for 2)

$$
\text { it's } \begin{aligned}
& 4+6+1+5+6 \\
= & 22=2 \cdot 11
\end{aligned}
$$

Any thing special about the a numbers? The \# of eagles! CHECK! core of yer graphs)

Con secture: if we have m edges, \& V is our set of vertices, then $2 m=\sum_{v \in v} \operatorname{deg}(r)$.

This is TAUE! (Hand snaking lemma!) how can we prove it?

Now we can begin Solving graph Theoretic problems!

Q: In a graph, how many vertices can have odd degree? [CHECK].

Thin: A Graph has an even number of vertices of odd degree
let V_{1} be the set of revtikes with even degree, let V_{a} be the set of vertices with odd degree.

By the hand shaking roma,

$$
\begin{aligned}
2 m & =\sum_{V \in V} \operatorname{deg}(v) \\
& =\underbrace{\sum_{v \in V_{1}} \operatorname{deg}(v)}_{\text {even }}+\underbrace{\sum_{V \in V_{2}} \operatorname{deg}(v)}_{\text {even }}
\end{aligned}
$$

But the only way we add odds to get even is if there is an even number of them.

Were almost ready for ko nits berg!
The rant tool we need is PATHS.
Defi path
let $n \geqslant 0$ \& let G be a graph. A path of rength n from u to V in G is a sequence of n edges $e_{1}, e_{2}, \ldots, e_{n}$ where the exist nodes $x_{0}=u, x_{1}, \ldots, x_{n-1}, x_{n}=V$ of nodes S.t. e_{1} has end points $x_{0}, x_{1} \&$ in general e_{i} has end points $x_{i}-1 * x_{i}$.

We call these two notations EDGE form \& VERTEX form resp.

NOTE: when we halle multiple edges btw 2 nodes, vertex form is con fusing:

Ex)

What is the path abc? Two WAYS 2 \Rightarrow vie EDGE Sorn!

Defi A path is simple if he don't pass over any edge twice. \Rightarrow Draw Ex

Defi A CIRCUIT is a path that begins q ends at the same vert tex \Rightarrow Draw Ex

Defi A simple graph has no loops on multiple edges \Rightarrow Draw simp \& non simp.

