Quadratic irrationalities II

- 1. Find the last digit of the number $\lfloor (\sqrt{2} + \sqrt{3})^{100} \rfloor$. (Here $\lfloor x \rfloor$ denotes the integer part (the floor) of number x)t.
- 2. Find the largest power of 2 which divides $\lfloor (1 + \sqrt{3})^{99} \rfloor$.
- 3. Show that $(1 + \sqrt{2})^{2023}$ can be written as $\sqrt{N} + \sqrt{N+1}$ for some integer N.
- 4. Show that the following equations have infinitely many integer solutions:
 - (a) $x^2 = 2y^2 1;$ (c) $x^2 3y^2 = 4;$ (c) $x^2 17y^2 = 1.$
 - (d) What about the equation $x^2 3y^2 = 2$?
- 5. Show that every integer solution of the equation $|x^2 2y^2| = 1$ is given by $x + y\sqrt{2} = (1 + \sqrt{2})^k$ for some integer k. [Hint. Verify first that if $|x^2 - 2y^2| = 1$, then $|y| \le |x|$ and |x| < 2|y|.]
- 6. Find continued fractions expression for (a) $\sqrt{3}$; (b) $\sqrt{10}$; (c) $\sqrt{17}$. I.e. find positive integers a_0, a_1, a_2, \ldots such that $\sqrt{3} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}$, etc.
- 7. Try to find a connection between the previous problem and solutions of the equations $x^2 dy^2 = 1$ for d = 3, 10, and 17.