Exercises on p-adic numbers. I

1. What number is represented by ... 31313131 in 10 -adic numbers? And in 5 -adic?
2. Express the numbers $1 / 7,2 / 7,3 / 7,4 / 7,5 / 7,6 / 7$ as "usual" periodic decimal fractions. Now represent them as 10 -adic numbers. Do you notice anything interesting?
3. We know that the equation $x^{2}=x$ has 4 solutions in 10 -adic numbers:

$$
0, \quad 1, \quad \ldots 392256259918212890625 \text { and } \ldots 607743740081787109376
$$

How many solutions does $x^{3}=x$ have in 10 -adic numbers?
4. We saw that 10 -adic numbers have zero divisors, i.e. non-zero numbers whose product is zero. Show that if p is prime, then p-adic numbers do not have zero divisors.
5. (a) We saw that there is no $\sqrt{2}$ in p-adic numbers for $p=2,3$, or 5 . Show that it exists for $p=7$.
(b) One of the values of $\sqrt{2}$ in 7 -adic numbers ends with digits $\ldots 13$. Find the next three digits.
(c) Show that the digits of $\sqrt{2}$ in 7 -adic numbers are not periodic or eventually periodic.

