BMC Beginners II: Modular Arithmetic

Felicia Lim | 8 November 2023

Definition: For positive integer m, a and b are congruent modulo m if a and b have the same remainder when divided by m.

$$
a \equiv b \bmod m
$$

Use the notation for modular arithmetic when solving the following problems.

1. If we have a group of 38 people and we want to make groups of 3 , how many people are not in a group?
2. Today is a Wednesday. What day of the week is it 30 days from now?
3. Your neighbor starts building their fence on Monday morning. They work only on weekdays (Mon-Fri), and it takes them 32 days to build the fence. On what day does your neighbor finish building the fence?
4. On 9pm on Tuesday, PG\&E had a planned power outage for 100 hours. What day and time does the electricity come back?
5. Suppose Sally is on a snowboarding expedition on the moon. She wants to break the world record and complete a 3150° rotation. If she starts facing due west and turns counter-clockwise, what direction should she be facing at the end?
6. A gaggle of turkeys live on Farmer John's farm. Farmer John sends his 3 kids out to count the number of turkeys. The 3 kids, Alice, Bob, and Charles, come up with a plan. Alice will count by 3's, Bob will count by 5's, and Charles will count by 19's. After counting the turkeys, they report back to Farmer John.

Alice says: "I counted the turkeys by 3's and there were 2 left over." Bob says: "I counted the turkeys by 5 's and there were 3 left over." Charles says: "I counted the turkeys by 19's and there were 7 left over."

What is the minimum number of turkeys that Farmer John can have?

Properties: Suppose $a_{1} \equiv b_{1} \bmod m$ and $a_{2} \equiv b_{2} \bmod m$. Then, we have the following.

- $a_{1}+a_{2} \equiv b_{1}+b_{2} \bmod m$
- $a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2} \bmod m$

Use these properties when solving the following problems.
7. Find a divisibility rule for 8 . Make sure to explain why it works.
8. Testing for divisibility for 24 using 4 and 6 doesn't work. Can you find a way that does work?
9. Let n be a natural number. n^{2} has a remainder of 4 when divided by 5 and n^{3} has a remainder of 2 when divided by 5 . What is the remainder of n when divided by 5 ?

