BERKELEY MATH CIRCLE

The Math of Chemistry

The Make-up of Atoms II: Electrons, Light \& the EM Spectrum

Instructor: Patricio Angulo

Let's transition to light and PHOTONS! We will relate this soon to Electrons ;)
Light is defined as both a WAVE and a PARTICLE1 Dual Natare
As a PARTICLE, light exists in defined quantities known as Light Quanta or Photons, and these photons have energy associated with them (same is true for ANY moving object - think physics!). A photon is considered to be massless with no electric charge.

As a WAVE, light has properties of waves, includin frequency (how often the cycle occurs) and wavelength (the length of each cycle). Mathematically, it looks like this:

Anything that travels has energy, so therefore we can measure the energy of light, using this equation:
Planck's Equation \rightarrow E = hf $\rightarrow 3$ variables
$E=$ Energy of the Photon(Joules)

$$
6.6 \times 11^{-34}
$$

$\mathrm{h}=$ Planck's Constant $=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
$\mathrm{f}=$ frequency of photon (hertz, cycles/second $=1 / \mathrm{s}$) = how often the light "particles" keep coming

For waves, we think of a wave's frequency as related to it's wavelength, and this gives us the waves speed (this is true for any constant wave)!

Going back to photons and light, we therefore have two items to consider:

Why does this matter?

1. Properties of different light types can be studied!
2. Fun with exponent math! We can review as needed

$$
\mathbf{E}=\mathbf{h f}=\mathbf{h c} / \lambda
$$

Energy and frequency are DIRECTLY related $E=h \cdot f$
Energy and wavelength are INVERSELY related

$$
\bar{d} E=\frac{h c}{\lambda}
$$

Vel of wove $=\lambda . f$
\uparrow Energy \rightarrow frequency $=1$ wavelength
\downarrow Energy $=\downarrow$ frequency $=\uparrow$ wavelength EM Spectrum $=$ Electro-Magnetic

All light types have specified ranges for frequency and wavelength. T purple Commonly, wavelength is used to describe light.
The light we see, visible light, has wavelengths of 4×10^{-7} meters to 7×10^{-7} meters.
To measure visible light, we normally use nanometers:

```
1 meter = 1 < 109 nanometers
```

Purple $=400 \mathrm{~nm}=4 \times 10^{-7}$ meters
Red $=700 \mathrm{~nm}=7 \times 10^{-7}$ meters

Math Problems!
Pick your favorite rainbow color (ROYGBV) from this chart:

Calculate your favorite visible light photon's frequency and Energy using $E=h f=h c / \lambda$.
For reference:

This is a multi-step problem. Try as much mental math instead of using a calculator. Rounding off towards the final steps is acceptable;)

Answer (1 of 6 possibilities)!

My favorite color is Green!
The $1^{\text {st }}$ step is to convert from nanometers to meters:
Green $=500 \mathrm{~nm}$
$500 \mathrm{~nm} \times 1 \mathrm{~m} / 1 \times 10^{9} \mathrm{~nm}=500 \times 10^{0} / 10^{9}=500 \times 10^{-9}=5 \times 10^{-7} \mathrm{~m}$ OR
$500 \mathrm{~nm} \times 1 \mathrm{~m} / 1 \times 10^{9} \mathrm{~nm}=5 \times 10^{2} \mathrm{~nm} \times 1 \mathrm{~m} / 10^{9} \mathrm{~nm}=5 \times 10^{2} / 10^{9}=5 \times 10^{-7} \mathrm{~m}$
The $2^{\text {nd }}$ step is to use ourfum, new equations!

Answer (1 of 6 possibilities) Continued

Whew!

