BERKELEY MATH CIRCLE

The Math of Chemistry

The Make-up of Atoms I: Protons, Electrons \& Neutrons

Instructor: Patricio Angulo

The History \& Make-Up of Atoms

Atoms

Atoms are the basic building blocks for all objects in universe, and all elements discovered (or made) are made of different atoms (by elements, I mean "Carbon", Helium", Aluminum", etc.) The atom was originally thought to be smallest particle around, but then, discoveries of sub-atomic particles were made! We have:

1. Proton $(+)=$ Defines the element!, positively charged, mass $=1.7 \times 10^{-27}$ kilograms
2. Electron $(-)=$ negatively charged, mass $=9.1 \times 10^{-31}$ kilograms
3. Neutron = no charge, same mass as proton

Math Problem!

The electron's mass is considered negligible relative to the proton. Why? Show with examples or a proof.

Atom Make-up

Protons \& Neutron = exist in nucleus
Electron = exist outside of the nucleus (more on this later)

Atom structure
(+) Proton
Neutron
© Electron

Elements are organized into the Periodic Table of Elements. They are organized into columns by their similarities in chemical properties:

$\underset{\substack{\text { Alkaline } \\ \text { Earth }}}{\substack{\text { and } \\ \hline}}$ Transition
Metal

Semimetal
Nonmetal
Basic
Metal
Halogen
Noble
Gas
Lanthanide
Actinide

For each element, we can directly relate the amount of protons, electrons and neutrons that exist. But first, we need to learn some terms!

Symbol of Element

1 or 2 letter abbreviation for each element

Mass Number

- Not always a whole number (more on this later!)
- \#protons + \#neutrons

Atomic Number
\#protons (defines the element!)
Thus,
Mass number__ 12
(\# protons + \# neutrons)

Atomic

```
# of protons = atomic number (defines the element!)
# of electrons = # of protons (if neutral)
# of neutrons = Mass Number - Atomic number
```


Math Problem!

Using the provided periodic table, calculate the number of protons, electrons, and neutrons for each of the following:

1. Fluorine (F)
2. Iron (Fe)
3. Charged Oxygen $\left(\mathrm{O}^{-2}\right)$
4. Chlorine (Cl)

1		Key										3	4	5	6	7	0				
			1 H hydrogen 1		$\begin{gathered} 4 \\ \mathrm{He} \\ \text { helium } \\ 2 \end{gathered}$																
$\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	9 Be beryllium 4						relative ato atomic	e atomi mic sym name (proton)	ic mass mbol number							$\begin{gathered} 11 \\ \mathbf{B} \\ \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{~N} \\ \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ \mathbf{F} \\ \text { fluonine } \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23 \\ \text { Na } \\ \text { sodium } \\ 11 \end{gathered}$	$\mathbf{2 4}$ $\mathbf{M g}$ magnesium 12											27 $\mathbf{A l}$ aluminium 13	$\begin{gathered} 28 \\ \mathrm{Si} \\ \text { silicon } \\ 14 \end{gathered}$	31 \mathbf{P} phosphorus 15	$\begin{gathered} 32 \\ S \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { CI } \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \text { Ar } \\ \text { argon } \\ 18 \end{gathered}$				
$\begin{array}{\|c\|} \hline 39 \\ \mathbf{K} \\ \text { potassium } \\ 19 \end{array}$	$\begin{gathered} 40 \\ \text { Ca } \\ \text { calcium } \\ 20 \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ \text { Sc } \\ \text { scandium } \\ 21 \end{array}$	$\begin{gathered} 48 \\ \mathrm{Ti} \\ \text { titanium } \\ 22 \end{gathered}$	51 \mathbf{V} vanadium 23	52 Cr chromium 24	55 $\mathbf{M n}$ manganese 25	$\begin{aligned} & 56 \\ & \text { Fe } \\ & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Ni} \\ \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \mathrm{Cu} \\ \text { copper } \\ 29 \end{gathered}$	$\begin{aligned} & 65 \\ & \text { Zn } \\ & \text { zinc } \\ & 30 \\ & \hline \end{aligned}$	70 Ga gallium 31	73 $\mathbf{G e}$ germanium 32	75 As arsenic 33		$\begin{gathered} 80 \\ \mathrm{Br} \\ \text { bromine } \\ 35 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{K r} \\ \text { krypton } \\ 36 \end{gathered}$				
$\begin{gathered} 85 \\ \text { Rb } \\ \text { rubidium } \\ 37 \end{gathered}$	88 $\mathbf{S r}$ strontium 38	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { yttrium } \\ 39 \end{gathered}$	91 $\mathbf{Z r}$ zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	$\begin{gathered} 101 \\ \mathrm{Ru} \\ \text { ruthenium } \\ 44 \end{gathered}$	$\begin{gathered} 103 \\ \text { Rh } \\ \text { modium } \\ 45 \end{gathered}$	106 Pd palladium 46	$\begin{gathered} 108 \\ \mathbf{A g} \\ \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} \hline 122 \\ \text { Sb } \\ \text { antimony } \\ 51 \end{gathered}$	$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { tellurium } \\ 52 \end{gathered}$	$\begin{gathered} 127 \\ \text { l } \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \mathbf{X e} \\ \text { xenon } \\ 54 \end{gathered}$				
$\begin{gathered} 133 \\ \text { Cs } \\ \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { barium } \\ 56 \end{gathered}$	$\begin{array}{\|c\|} \hline 139 \\ \text { La* }^{*} \\ \text { lanthanum } \\ 57 \end{array}$	$\begin{gathered} 178 \\ \text { Hf } \\ \text { hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 181 \\ \mathrm{Ta} \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{W} \\ \text { tungsten } \\ 74 \end{gathered}$	$\begin{gathered} 186 \\ \operatorname{Re} \\ \text { denium } \\ 75 \end{gathered}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { lr } \\ \text { iridium } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \mathbf{P t} \\ \text { platinum } \\ 78 \end{gathered}$	$\begin{aligned} & 197 \\ & \mathbf{A u} \\ & \text { gold } \\ & 79 \end{aligned}$	$\begin{gathered} 201 \\ \mathrm{Hg} \\ \text { mercury } \\ 80 \end{gathered}$	$\begin{gathered} 204 \\ \text { TI } \\ \text { thallium } \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \text { Pb } \\ \text { lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \mathrm{Bi} \\ \text { bismuth } \\ 83 \end{gathered}$	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} {[210]} \\ \text { At } \\ \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \end{gathered}$				
$\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { francium } \\ 87 \end{gathered}$	$\begin{gathered} {[226]} \\ \mathrm{Ra} \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} \text { [227] } \\ \mathbf{A c}^{*} \\ \text { actinium } \\ 89 \end{gathered}$	$\begin{array}{\|c\|} \hline[261] \\ \mathbf{R f} \\ \text { wthefordium } \\ 104 \end{array}$	$\begin{gathered} {[262]} \\ \mathrm{Db} \\ \text { dubnium } \\ 105 \end{gathered}$	$[266]$ Sg seaborgium 106	$\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} {[277]} \\ \mathrm{Hs} \\ \text { hassium } \\ 108 \end{gathered}$	$\begin{array}{\|c\|} \hline[268] \\ \text { Mt } \\ \text { meitnerium } \\ 109 \end{array}$	$[271]$ Ds darmstadtium 110	$[272]$ Rg roentgenium 111	Elements with atomic numbers $112-116$ have been reported but not fully authenticated										

* The Lanthanides (atomic numbers $58-71$) and the Actinides (atomic numbers $90-103$) have been omitted

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

Solutions
Fluorine (F)

Iron (Fe)

Charged Oxygen (O^{-2})

Chlorine (CI)

Is their more than one answer possible for \#3? Why or Why not?

What do you notice about Chlorine?

The Truth About The Atomic Mass Number!

Many elements occur naturally in different varieties. As we saw with problem 3, electrons may be added or taken away to create charged elements called ions (positively charged = cations; negatively charged = anions).

But we can also vary the number of neutrons in the nucleus while NOT changing the number of protons (why is this?). This creates the same element with different masses and thus different atomic mass numbers. These are referred to as isotopes of an element.

Isotopes = Different version of the same element. They are found in nature in specified \%'s (done so experimentally).
For example:
C-12 = Carbon 12 features 6 protons +6 neutrons in its nucleus; It's Percentage Abundance is 98.90%
$\mathrm{C}-13=$ Carbon 13 features 6 protons +7 neutrons in its nucleus; It's Percentage Abundance is 1.10%
Carbon's listed and PT table mass is 12.011. How did that number get calculated?

Via Weighted Average Calculations!

(Mass of X isotope $\times \%$ abundance) + (Mass of Y isotope $\times \%$ abundance) + = avg mass (also referred to as amu)

Math Problems!

1) Set-up the equation to calculate the average atomic mass of Nitrogen (N) based on the information given:

Isotope	Mass	\% Abundance
$\mathrm{N}-14$	14.003074	99.63%
$\mathrm{~N}-15$	15.000108	0.37%

2) The final grade for "Math Taught the Right Way (MTRW)" is calculated via weighted averages. What is final grade if the following were true?

Homework	Attendance	Final
20% of grade	20% of grade	60% of grade
800 points out of 1000 total points available	16 classes attended out of 20 classes given	90% on test

Answers!
1)
2)

