BERKELEY MATH CIRCLE

The Math of Chemistry

The Make-up of Atoms I: Protons, Electrons & Neutrons

Instructor: Patricio Angulo

The History & Make-Up of Atoms

Atoms

Atoms are the basic building blocks for all objects in universe, and all elements discovered (or made) are made of different atoms (by elements, I mean "Carbon", Helium", Aluminum", etc.) The atom was originally thought to be smallest particle around, but then, discoveries of sub-atomic particles were made! We have:

- 1. Proton (+) = Defines the element!, positively charged, mass = 1.7×10^{-27} kilograms
- 2. Electron (-) = negatively charged, mass = 9.1×10^{-31} kilograms
- 3. Neutron = no charge, same mass as proton

Math Problem!

The electron's mass is considered negligible relative to the proton. Why? Show with examples or a proof.

Atom Make-up

Protons & Neutron = exist in nucleus Electron = exist outside of the nucleus (more on this later)

The Periodic Table

Elements are organized into the Periodic Table of Elements. They are organized into columns by their similarities in chemical properties:

For each element, we can directly relate the amount of protons, electrons and neutrons that exist. But first, we need to learn some terms!

Symbol of Element

1 or 2 letter abbreviation for each element

Mass Number

- Not always a whole number (more on this later!)
- #protons + #neutrons

Atomic Number

#protons (defines the element!)

Thus,

of protons = atomic number (defines the element!)
of electrons = # of protons (if neutral)
of neutrons = Mass Number - Atomic number

Math Problem!

Using the provided periodic table, calculate the number of protons, electrons, and neutrons for each of the following:

- 1. Fluorine (F)
- 2. Iron (Fe)
- 3. Charged Oxygen (O⁻²)
- 4. Chlorine (Cl)

1	2											3	4	5	6	7	0
				Key			1 H hydrogen 1										4 He helium 2
7 Li	9 Be		relative atomic mass atomic symbol									11 B	12 C	14 N	16 O	19 F	20 Ne
lithium 3	beryllium 4		atomic (proton) number					boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10				
23 Na	24 Mg					_						27 Al	28 Si	31 P	32 S	35.5 CI	40 Ar
sodium 11	magnesium 12											aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39 K	40 Ca	45 Sc	48 T i	51 V	52 C r	55 Mn	56 Fe	59 Co	59 Ni	63.5 Cu	65 Zn	70 Ga	73 Ge	75 As	79 Se	80 Br	84 K r
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85 Rb	88 S r	89 Y	91 Zr	93 Nb	96 Mo	[98] Tc	101 Ru	103 Rh	106 Pd	108 Ag	112 Cd	115 In	119 Sn	122 Sb	128 Te	127 I	131 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
133 Cs	137 Ba	139 La *	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 Au	201 Hg	204 TI	207 Pb	209 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac* actinium	[261] Rf	[262] Db dubnium	[266] Sg seaborgium	[264] Bh	[277] Hs hassium	[268] Mt		[272] Rg roentgenium	Elements with atomic numbers 112 – 116 have been reported but not fully authenticated						
87	88	89	104	105	106	107	108	109	110	111							

^{*} The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.

The Truth About The Atomic Mass Number!

Many elements occur naturally in different varieties. As we saw with problem 3, electrons may be added or taken away to create charged elements called **ions** (positively charged = cations; negatively charged = anions).

But we can also vary the number of neutrons in the nucleus while NOT changing the number of protons (why is this?). This creates the same element with different masses and thus different atomic mass numbers. These are referred to as **isotopes** of an element.

Isotopes = Different version of the same element. They are found in nature in specified %'s (done so experimentally).

For example:

C-12 = Carbon 12 features 6 protons + 6 neutrons in its nucleus; It's Percentage Abundance is 98.90%

C-13 = Carbon 13 features 6 protons + 7 neutrons in its nucleus; It's Percentage Abundance is 1.10%

Carbon's listed and PT table mass is 12.011. How did that number get calculated?

Via Weighted Average Calculations!

(Mass of X isotope x % abundance) + (Mass of Y isotope x % abundance) + = avg mass (also referred to as amu)

Math Problems!

1) Set-up the equation to calculate the average atomic mass of Nitrogen (N) based on the information given:

Isotope	Mass	% Abundance			
N-14	14.003074	99.63%			
N-15	15.000108	0.37%			

2) The final grade for "Math Taught the Right Way (MTRW)" is calculated via weighted averages. What is final grade if the following were true?

Homework	Attendance	Final
20% of grade	20% of grade	60% of grade
800 points out of 1000 total points available	16 classes attended out of 20 classes given	90% on test

Answers!

1)

2