BERKELEY MATH CIRCLE

The Math of Chemistry:

Moles & Molecules I

Patricio Angulo

The Periodic Table

Elements are organized into the Periodic Table of Elements. They are organized into columns by their similarities in chemical properties:

1 IA 11A 1 Hydrogen	2 IIA					Perio	odic T	able	of the	e Elen	nents	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA 8A 2 Heium Heium
1.008 3 Li Lithium 6.941 11	4 Be 9.012											3A 5 Boron 10.811	4A 6 Carbon 12.011	5A 7 N Nitrogen 14.007	6A 8 0 0xygen 15.999 16	9 Fluorine 18.998	4.003 10 Neon 20.180 18
Na Sodium 22.990	Mg Magnesium 24.305	3 111B 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 	10	11 IB 1B	12 IIB 2B	Aluminum 26.982	Silicon 28.086	Phosphorus 30.974	S Sulfur 32.066	Chlorine 35.453	Argon 39.948
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.933	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.39	31 Gallium 69.732	32 Germanium 72.61	33 As Arsenic 74.922	34 Se Selenium 78.09	35 Br Bromine 79.904	36 Kr Krypton 84.80
37 Rb Rubidium 84.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.94	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh 102.906	46 Pd Palladium 106.42	47 Ag silver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn 118.71	51 Sb Antimony 121.760	52 Tellurium 127.6	53 Iodine 126.904	54 Xe Xenon 131.29
55 Cs _{Cesium} 132,905	56 Ba Barium 137.327	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.967	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Po Polonium [208.982]	85 At Astatine 209.987	86 Rn 222.018
87 Fr Francium	88 Radium	89-103	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtiun	111 Rg Roentgenium	Copernicium	113 Uut Ununtrium	114 Fl Flerovium	115 Uup	116 LV Livermorium	117 Uus Ununseptium	118 Uuo Ununoctium
223.020 226.025 [261] [262] [264] [269] [268] [269] [272] [277] unknown [289] unknown [298] unknown [298] unknown [298] unknown [298] unknown unknown Lanthanide Series 57 58 59 60 Add 61 62 63 64 65 66 67 68 69 70 Yb Yterblum Yterblum Yterblum 144.913 53.36 59 60 61 62 63 64 65 66 67 68 69 70 Yb Yterblum Yterblum 144.967 74.967 14.967																	
			Alkali Metal	Alkalin Earti			mimetal	Nonmetal	Basic Metal	Halog		oble Gas La	nthanide	Actinide			3 Todd Helmenstine istry.about.com

© 2013 Todd Helmenstin chemistry.about.com sciencenotes.org

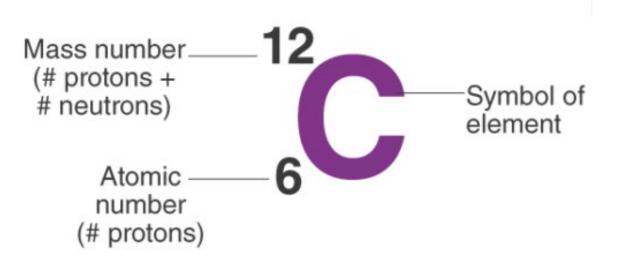
FROM LAST TIME:

For each element, we can directly relate the amount of protons, electrons and neutrons that exist. But first, we need to learn some terms!

Symbol of Element

1 or 2 letter abbreviation for each element

Mass Number


- Not always a whole number (more on this later!)
- *#protons* + *#neutrons*

Atomic Number

#protons (defines the element!)

Thus,

of protons = atomic number (defines the element!)
of electrons = # of protons (if neutral)
of neutrons = Mass Number - Atomic number

When we think of atoms, we can't "see" them, but we can measure them. We call this a **microscopic** view. But what about a **macroscopic** view? What things can we see, and then also measure? And how do we measure them?

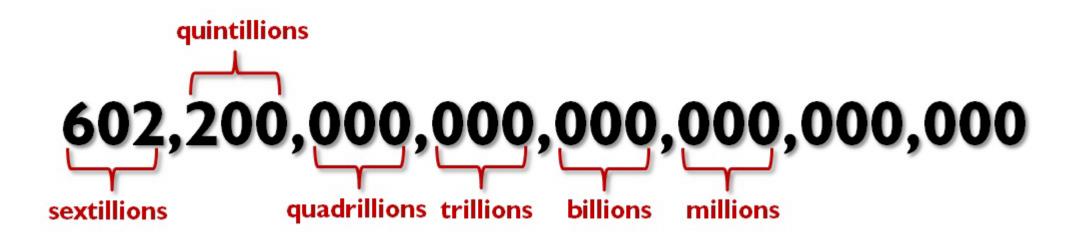
For example:

If we measure our examples above, how do we compare them? By weight? By mass?

Since all of these elements exist as a collection of whole atoms, the only way to compare or measure them on **equal standing** is by measuring and counting **how many** of them exist. Their mass may be different, but the amount of them may be the same. In essence, we are counting how may particles of each element or molecule exist. Any guesses how many atoms in each of these?

Since we are dealing with very, very small objects, we need a way to count them in an easily digestible manner. Just like 1 dozen = 12 and 1 kilometer = 1000m, we need small, digestible values to represent INSANELY huge amounts!

We therefore welcome the concept of **Avogadro's Number** (NOT Avocado!)!

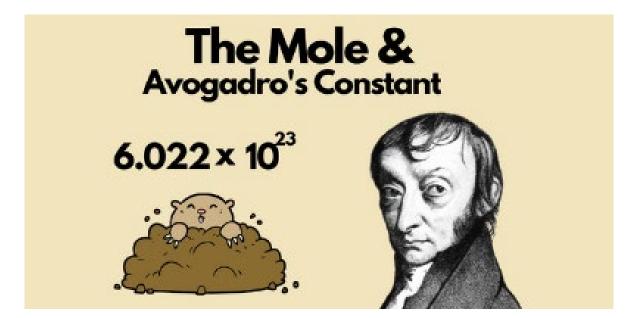

Avogadro ≠ Avocado

Avogadro's number is **6.022 x 10^{23}.** That's a HUGE amount!

How huge? Well

602,200,000,000,000,000,000,000

602.2 Sextillion!



What then, does this HUGE number represent?

 $6.022 \times 10^{23} = 1$ mole of things (atoms, particles, molecules)

Again, just like:

1 dozen = 12 1 kilo = 1000 1 mole = 6.022 x 10²³

So, we've learned two new concepts:

Avogadro's Number AND the Mole

1 mole of atoms = 6.022×10^{23} atoms

1 mole of atoms = Avogadro's number of atoms

How does all relate back to our microscopic and macroscopic view of things? From before: Since all of these elements exist as a collection of whole atoms, the only way to compare or measure them on equal standing is by measuring and counting how many of them exist.

A mole is a unit of quantity.

A mole is 6.02 x 10²³ things.

6.02 x 10²³ is known as Avogadro's constant (N_A)

Number of	÷ 6.02 x 10 ²³	
atoms, molecules or fundamental units	× 6.02 x 10 ²³	Number of moles (mol)

Again, from before:

So:

Their mass may be different, but the amount of them may be the same. In essence we, are counting how may particles of each element or molecule exist.

We will relate all of this to mass soon, but first, let's play with scientific notation, powers of ten, and numbers of things!

Math Fun!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. You DO NOT need a calculator ;)

1) I have 2 moles of carbon. How many atoms of carbon do I have?

2) I have 0.5 moles of salt (NaCl). How many molecules of salt do I have?

3) I have 5 moles of water (H_2O). How many molecules of water do I have?

Math Fun!

To simplify, let's use $6 \times 10^{23} = 1$ mole of things for Avogadro's Number. You DO NOT need a calculator ;)

1) I have 2 moles of carbon. How many atoms of carbon do I have?

2) I have 0.5 moles of salt (NaCl). How many molecules of salt do I have?

 $\begin{array}{c|c} \underline{0.5 \text{ moles NaCl}} & X & \underline{6 \times 10^{23} \text{ molecules of NaCl}} \\ 1 & 1 & \text{mole of NaCl} \end{array} = 1/2 \times (6 \times 10^{23}) = \textbf{3 x 10^{23} molecules of NaCl} \\ \end{array}$

3) I have 5 moles of water (H_2O). How many molecules of water do I have?

 $\frac{5 \text{ moles } H_2O}{1} \quad X \quad \frac{6 \times 10^{23} \text{ molecules of } H_2O}{1 \text{ mole of } H_2O} = 5 \times (6 \times 10^{23}) = 30 \times 10^{23} = 3 \times 10^{24} \text{ molecules of } H_2O$

More Math Fun!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. You DO NOT need a calculator ;)

1) I have 2.4 x 10^{28} atoms of Calcium (Ca). How many moles of Calcium do I have?

2) I have 3×10^{20} molecules of carbon dioxide (CO₂). How many moles of CO₂ do I have?

3) I have 1.8 x 10²⁵ particles of helium gas (He). How many moles of helium do I have?

More Math Fun!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. You DO NOT need a calculator ;)

1) I have 2.4 x 10^{28} atoms of Calcium (Ca). How many moles of Calcium do I have?

 $\begin{array}{cccc} \underline{2.4 \times 10^{28} \text{ atoms of Calcium}} & X & \underline{1 \text{ mole of Calcium}} & = & \underline{2.4 \times 10^{28}} & = & \underline{24 \times 10^{27}} & = 4 \times 10^4 = \textbf{40,000 moles Ca} \\ 1 & 6 \times 10^{23} \text{ atoms of Calcium}} & 6 \times 10^{23} & 6 \times 10^{23} \end{array}$

2) I have 3×10^{20} molecules of carbon dioxide (CO₂). How many moles of CO₂ do I have?

 $\frac{3 \times 10^{20} \text{ molecules CO}_2}{1} X \frac{1 \text{ mole of CO}_2}{6 \times 10^{23} \text{ atoms of CO}_2} = \frac{3 \times 10^{20}}{6 \times 10^{23}} = \frac{1 \times 10^{20}}{2 \times 10^{23}} = 0.5 \times 10^{-3} = 5 \times 10^{-4} = 0.0005 \text{ moles CO}_2$

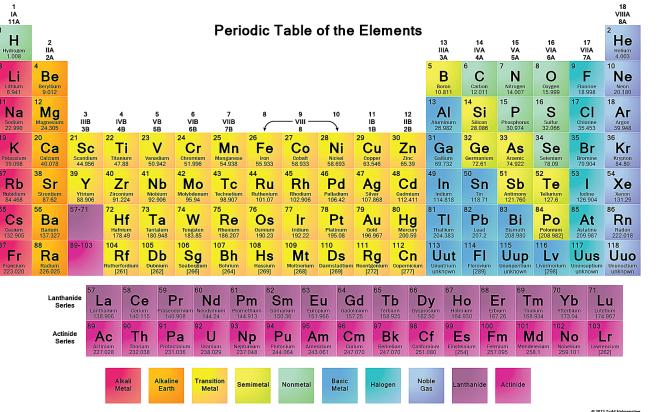
3) I have 1.8 x 10²⁵ particles of helium gas (He). How many moles of helium do I have?

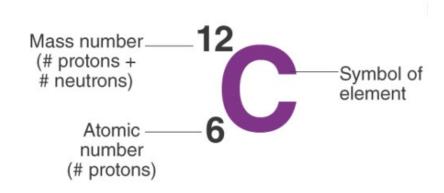
$$\frac{1.8 \times 10^{25} \text{ particles He}}{1} \text{ X} \quad \frac{1 \text{ mole of He}}{6 \times 10^{23} \text{ particles He}} = \frac{1.8 \times 10^{25}}{6 \times 10^{23}} = \frac{18 \times 10^{25}}{6 \times 10^{23}} = 3 \times 10^2 = 300 \text{ moles He}$$

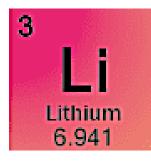
BUT, how does this relate to what we see and measure in day-to-day life! From before, we had the objects below. Can we say?

"I have 6.022 x 10²³ atoms of carbon in my pencil" "Please pass me 3.01 x 10²³ particles of salt" "May you fill my balloon with 1.04 x 10²⁴ atoms of Helium?"

Of course not! That's ridiculous!


We tend to measure things by their mass, and then relate them to how many of them exist (atoms, molecules, moles, etc.). So, we need to a way to do so




Our good friend, **The Periodic Table of Elements** is here to help us again! Without getting into all of the background, scientists have discovered that an Avogadro's amount of any element or atom = 1 mole of that element or atom, and is ALSO equal to that element or atom's atomic mass when measured in **grams**.

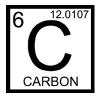
© 2013 Todd Helmenstine chemistry.about.com sciencenotes.org

For Example:

6.022 x 10²³ atoms of Lithium
1 mole of Lithium
6.941 grams of Lithium

6.022 x 10²³ atoms of Aluminum
1 mole of Aluminum
26.982 grams of Aluminum

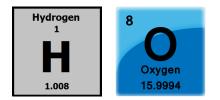
It's also ADDITIVE! Table Salt = Sodium Chloride



6.022 x 10²³ molecules of NaCl = 1 mole of NaCl 22.990 + 35.453 = 58.443 grams of NaCl

Even More Math Fun!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. Also, round off mass numbers to their first decimal space. For example, Nitrogen's mass number is listed as 14.007, so use 14.0.


1) I have 2 moles of carbon. How many grams of carbon do I have?

2) I have 0.5 moles of salt (NaCl). How many grams of salt do I have?

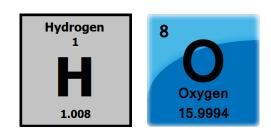
3) I have 5 moles of water (H_2O). How many grams of water do I have?

Even More Math Fun!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. Also, round off mass numbers to their first decimal space. For example, Nitrogen's mass number is listed as 14.007, so use 14.0.

1) I have 2 moles of carbon. How many grams of carbon do I have?

2 moles of Carbon x 12 grams Carbon = **24 grams of Carbon** 1 mole of Carbon


2) I have 0.5 moles of salt (NaCl). How many grams of salt do I have?

3) I have 5 moles of water (H_2O). How many grams of water do I have?

 $5 \operatorname{moles of H}_{2}O \times 18 \operatorname{grams H}_{2}O = 90 \operatorname{grams of H}_{2}O$ $1 \operatorname{mole of H}_{2}O$

More than Even More Math Fun!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. Also, round off mass numbers to their first decimal space. For example, Nitrogen's mass number is listed as 14.007, so use 14.0.

1) I have 80.2 grams of Calcium (Ca). How many moles of Calcium do I have? How many atoms of Calcium do I have?

2) I have 132 grams carbon dioxide (CO₂). How many moles of CO₂ do I have? How many molecules of CO₂ do I have? *BONUS Question: How many atoms of Oxygen do I have?*

3) I have 30 grams of helium gas (He). How many moles of helium do I have? How many particles of He do I have?

The MOST Math Fun EVER!

To simplify, let's use $6 \ge 10^{23} = 1$ mole of things for Avogadro's Number. Also, round off mass numbers to their first decimal space. For example, Nitrogen's mass number is listed as 14.007, so use 14.0.

- 1) Pick your favorite Element from the Periodic Table. Write down it's element abbreviation and mass number.
- 2) Square your age (use whole numbers only).
- 3) Your age squared is how many grams of your favorite element you have.
- 4) Calculate how many moles of your element you have.
- 5) Calculate how many atoms of your element you have.

Bonus Problem

Someone in class asked about what some of these items may look like in real life. The most familiar example is water (H₂O). If you poured a glass of water, how many water molecules are in the glass, i.e., how many molecules of water are you drinking?

Let's assume 1 cup of water:

1 cup = 8 fluid ounces = 237 mL (you can look up this conversion factor) We need water's density to match up with we learned last week, which is 1g/mL.

So, 1 standard cup of water of contains 237 grams of water. We therefore calculate:

You can do similar thought problems with salt, or any other pure (or mostly pure) substance in your house.

What Have We Learned?

We relate quantities in Chemistry but how many PHYSICAL items exist. This is why knowing Avogadro's number and the concept of a mole is so important! If we are trying to calculate specifically what is happening, we MUST know how many things are interacting with how many other things, and we do so via moles. Therefore, the relationship below is KEY to understanding chemical interactions:

of Particles ← → Moles ← → Grams

Let's Expand This!

Let's use our NEW understanding to understand something we probably ALL have done: the famous at-home volcano experiment!

Does anyone know what is happening in that experiment?

Let's Expand This!

The basics are that we mix vinegar with baking soda and BOOM! But what's happening on a chemical level?

Vinegar contains Acetic Acid (CH_3COOH). This is found in liquid form. Baking Soda contains sodium bicarbonate (NaHCO₃). This is found in solid form.

```
So,

CH_3COOH + NaHCO_3 \rightarrow Na^+ + CH_3COO^- + H_2CO_3
```

```
And then
H_2CO_3 \rightarrow H_2O + CO_2
```

Carbon Dioxide is a gas which then escapes into the air. This is what causes the "lava" movement in the experiment!

Relating back to Earlier ...

$CH_3COOH + NaHCO_3 \rightarrow Na^+ + CH_3COO^- + H_2CO_3 \rightarrow H_2O + CO_2$

One can relate how much acetic acid and sodium carbonate will react (assuming a full reaction) by using our previous relationship and expanding on it . . .

Previously we had . . .

$\texttt{\# of Particles} \xleftarrow{} \textsf{Moles} \xleftarrow{} \textsf{Grams}$

And we can use this for BOTH the acetic acid and sodium carbonate.

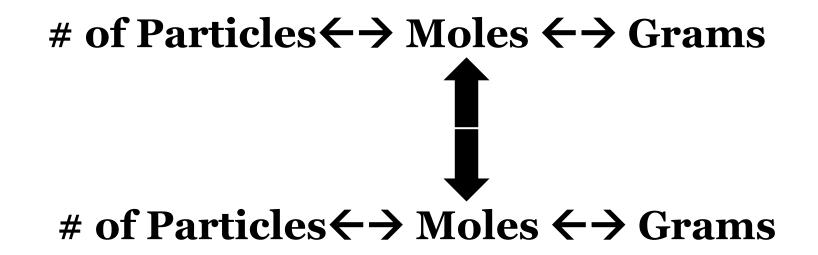
BUT, how do we relate them to each other?

The Mole Bridge!

of Particles ← → Moles ← → Grams # of Particles ← → Moles ← → Grams

The Mole Bridge!

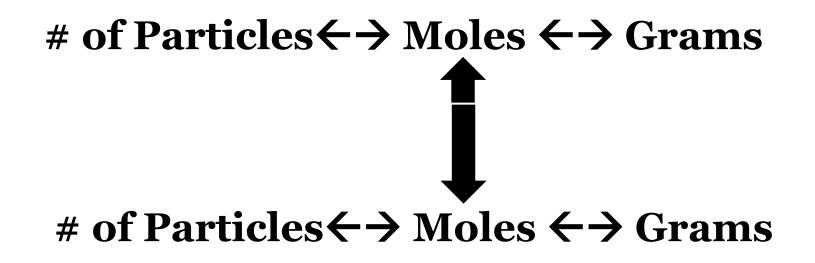
The mole bridge is part of a concept in Chemistry called Stoichiometry.


Stoichiometry = the relationship between the relative quantities of substances taking part in a reaction Back to volcanoes then

Volcano Problem

$\mathbf{CH_3COOH} + \mathbf{NaHCO_3} \rightarrow \mathbf{Na^+} + \mathbf{CH_3COO^-} + \mathbf{H_2CO_3} \rightarrow \mathbf{H_2O} + \mathbf{CO_2}$

If I used 100 grams of Acetic Acid, how many grams of Sodium Bicarbonate will I need to measure out in order to react all of the 100 grams of Acetic Acid?



Volcano Problem

 $CH_3COOH \rightarrow 60g/1 \text{ mole}$

 $NaHCO_3 \rightarrow 84g/1$ mole

100 grams of $CH_3COOH \ge 1/60 = 5/3$ moles $CH_3COOH \rightarrow 5/3$ moles $NaHCO_3 \ge 84g/mole = 140g NaHCO_3$

