BMC-Advanced: Fourier Analysis

Aaron Agulnick

Fall 2023

1 The Heat Equation

Consider a metal rod bent into a circle, with circumference 2π meters. Call the point at which the ends of the rod are glued together 0 , so that we can identify the rod with the unit interval $[-\pi, \pi)$ glued together at the endpoints. Suppose the rod starts with a temperature at each point x given by $f(x)$. We would like to understand the temperature at point x after time t, say as a function $u(t, x)$.

If you were a physicist in the early 1800 s, it would have been known to you that such a function describing the heat of the rod must satisfy

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u \\
u(0, x)=f(x)
\end{array}\right.
$$

at least when you choose your units appropriately. You would also know that when such a u exists, it is unique, so finding any solution to this differential equation actually tells you how the heat of the rod evolves over time.

A reasonable hope is that the function u splits as

$$
u(t, x)=v(t) g(x)
$$

for some single-variable equations v and g. In such a situation, one could observe

$$
\partial_{t} u=v^{\prime}(t) g(x)=v(t) g^{\prime \prime}(x)=\partial_{x}^{2} u
$$

or, in another form,

$$
\frac{v^{\prime}(t)}{v(t)}=\frac{g^{\prime \prime}(x)}{g(x)} .
$$

Since one side is a function only of t, and the other is a function only of x, one concludes that both sides must be constant. That is, there exists a constant λ such that

$$
\left\{\begin{array}{l}
v^{\prime}(t)=\lambda v(t) \\
g^{\prime \prime}(x)=\lambda g(x)
\end{array}\right.
$$

This method, called separation of variables, reduces our partial differential equation to an ordinary differential equation.

These equations should suggest to you some sort of exponential; in particular, $g^{\prime \prime}(x)=\lambda g(x)$ suggests using $g(x)=e^{i n x}$, since this is 2π-periodic when n is an integer, just like our initial state $f(x)$, and it satisfies $g^{\prime \prime}(x)=-n^{2} g(x)$. (It is a theorem that λ must be negative for any reasonable region whose heat evolution we want to understand.)

Once we have obtained $g(x)=e^{i n x}$, the separation of variables approach suggests that we should pick $v_{n}(t)$ with $v_{n}^{\prime}(t)=\lambda v_{n}(t)$, which we can solve for $v_{n}(t)=c_{n} e^{-n^{2} t}$ for some constant c_{n}. But c_{n} has some influence on the initial condition; namely $u(0, x)=c_{n} e^{i n x}$. We have thus obtained

$$
\begin{equation*}
u(t, x)=c_{n} e^{-n^{2} t} e^{i n x} \tag{1}
\end{equation*}
$$

which satisfies

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u \tag{2}\\
u(0, x)=c_{n} e^{i n x}
\end{array}\right.
$$

What is the physical interpretation of this?
Rewrite $\partial_{t} u=\partial_{x}^{2} u \Longleftrightarrow\left(\partial_{t}-\partial_{x}^{2}\right) u=0$. Since differentiation is linear, so is $\partial_{t}-\partial_{x}^{2}$. That is, if u and \tilde{u} satisfy $\left(\partial_{t}-\partial_{x}^{2}\right) u=\left(\partial_{t}-\partial_{x}^{2}\right) \tilde{u}=0$, then

$$
\begin{equation*}
\left(\partial_{t}-\partial_{x}^{2}\right)\left(a_{1} u+a_{2} \tilde{u}\right)=a_{1}\left(\partial_{t}-\partial_{x}^{2}\right) u+a_{2}\left(\partial_{t}-\partial_{x}^{2}\right) \tilde{u}=0 \tag{3}
\end{equation*}
$$

Since we already found that $u(t, x)=e^{-n^{2} t} e^{i n x}$ solves $\left(\partial_{t}-\partial_{x}^{2}\right) u=0$, we have

$$
\begin{equation*}
\sum c_{n} e^{-n^{2} t} e^{i n x} \tag{4}
\end{equation*}
$$

as a solution to the heat equation with initial condition

$$
\begin{equation*}
u(0, x)=\sum c_{n} e^{i n x} \tag{5}
\end{equation*}
$$

for any (finite) sum over integers n. It is not hard to argue that this extends to infinite sums when they converge. Thus, if we have

$$
\begin{equation*}
f(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x} \tag{6}
\end{equation*}
$$

then we also have

$$
\begin{equation*}
u(t, x)=\sum_{n \in \mathbb{Z}} c_{n} e^{-n^{2} t} e^{i n x} \tag{7}
\end{equation*}
$$

satisfying the heat equation with initial condition $u(0, x)=f(x)$. When can f be decomposed in this way?

2 Orthonormality

Suppose for a second that we know

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \tag{8}
\end{equation*}
$$

for appropriate coefficients c_{n}, called its Fourier coefficients. How could we find the c_{n} ?

The key observation is the following:
Theorem 1 (Orthonormality). $\int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x=0$ if $m \neq n$ and 2π if $m=n$.
Proof. The proof is easy: just compute!

$$
\begin{equation*}
\int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x=\int_{-\pi}^{\pi} e^{i(n-m) x} d x \tag{9}
\end{equation*}
$$

If $n=m$, the integrand is 1 , and we have

$$
\begin{equation*}
\int_{-\pi}^{\pi} 1 d x=2 \pi \tag{10}
\end{equation*}
$$

Otherwise, $n-m=k$ is some other integer, and

$$
\begin{equation*}
\int_{-\pi}^{\pi} e^{i k x} d x=\frac{1}{k}\left[e^{i k x}\right]_{x=-\pi}^{x=\pi}=\frac{1}{k}\left(e^{i \pi k}-e^{-i \pi k}\right)=0 \tag{11}
\end{equation*}
$$

since $e^{i k x}$ is 2π-periodic.
Remark 1. The meaning is that the complex exponentials are orthonormal with respect to a certain inner product, which is just

$$
\begin{equation*}
(f, g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \tag{12}
\end{equation*}
$$

This is a manifestation of a much more general phenomenon, appearing under the broad umbrella of Pontryagin duality, which unites the discrete Fourier transform, Fourier series, and the Fourier transform on \mathbb{R}. The above argument works with only the knowledge of the addition formula $e^{i n x} e^{i m x}=e^{i(n+m) x}$ and 2π-periodicity.

In any case, we can now extract the Fourier coefficients of functions if we are sufficiently confident that they exist.

Exercise 1. Compute the Fourier coefficients of the step function $f(x)=$ $\begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}$

One obtains a sequence of functions $f_{N}(x)=\sum_{k=-N}^{N} c_{k} e^{i k x}$ which converge (in some sense) to f as $N \rightarrow \infty$. We can graph f_{N} for increasing values of N and appreciate that they get closer and closer to the desired function. However, one observes Gibbs' phenomenon: that at the points of discontinuity of f, the sequence of functions seems to be a much worse approximation than elsewhere. The image below is not precisely the function described above, but it is illustrative.

(Obtained from these lecture notes.)

