
BMC - Advanced: Groups and Symmetry  

(2 hour crash course!)

Chris Overton  

231120 - Handout, revised after lecture  

We met on Nov 15 for a "crash course" on groups, motivated by thinking of their elements 
as symmetry operations. 
These notes are not fully self-contained, but they should remind you of what we discussed 
(in some cases, what we would have discussed if time had permitted.)

To find out more, there are many excellent introductions to group theory - most taking 
over two hours to study.

Warm-up problems  

What are all possible symmtries:
a) of an equilateral triangle?
b) of a regular tetrahedron?
c) of a 4-dimensional regular hyper-tetrahedron?

[More generally, the n-dimensional object with n+1 vertexes is called an n-simplex]

Here, by symmetry, we mean a rigid transformation (i.e. preserving lengths and angles) 
that maps corners to corners

In class, we demonstrated how we need to decide whether "symmetries" include mirror 
reflections, which we were regrettably not able to film for dimension >= 4.

 



Note: 

When you see: <---- SPOILER ALERT---->, (or just <----->), that means please 
don't look beyond this until you have thought about the question asked!

Topics for thought are often marked by -->. These are less likely to have answers, 
and several were discussed in class

<Done in class> material is not spelled out here

Topics for today  

Symmetries as a way to motivate groups & their axioms

Group properties I - as illustrated on the symmetric group 

Properties of multiplication ("Cayley") tables

Subgroups, cosets, actions

Where groups sit in math

Speed-dating popular kinds of groups; some of their properties

Symmetric groups 

Linear groups

"Easy" groups: abelian (commutative)

p-groups

All finite groups

Free groups, and groups via presentations

Crucial ways to understand how groups keep and break "symmetry":

Non-commutativity (related to non-identity commutators)

Homomorphisms

Conjugacy

Normal subgroups

We violate the usual group intro by not showing a (standard) Rubik's cube

More machinery & examples, as time permits



Symmetries as a way to motivate groups & their axioms  

We'll write groups in capital letters like  and their elements in lowercase like 

The first time I learned about groups, it seemed strange to have to memorize the weird set 
of defining rules. So lets "derive them" by considering the set of symmetries of an object.

 

 

 

<---- SPOILER ALERT---->

 

 

a specified set of elements (Its cardinality is called the group's order and is 
written )

well defined operation: any  determine an element  

neutral element, which we'll call " ": for , 

inverses (prove: left inverse = right inverse): for , there's an element 
 such that 

associativity

--> Question: what's a property we are used to from numbers that need not be true for 
symmetries?

<----->



Importantly, groups need not be commutative. This takes some getting used to, but 
allows for richer structure.

We demonstrated this by showing rotating a book by 90 degrees first around the x-axis 
and then around the y-axis turns out differently than for the other order of rotations

Group properties I - illustrated for  - a symmetric group  

To study this, we have to use notation from general permutation groups .

Two notations, respectively "permutation" and "cycle" notations:

 = (1 2 3)(4 5)(6) = (1 2 3)(4 5)

We prefer the second, because it is briefer and easier to read.
Elements not permuted (like 6 here) form their own cycle, which may be omitted.
Our convention: cycles multiply from left to right, e.g. (1 3)(2 3) = (1 2 3), 
not (1 3 2)

Work out the multiplication table (called Cayley table for . You just write rows and 
columns for all the elements , and then in the (i,j)th position, write the product 

 

 

 

 

<---- SPOILER ALERT---->

 



 

What are some properties of this (kind of) table?

<----->

 

 

The number  of elements = # of rows = # of columns

The neutral element appears exactly once in each row, and in each column

Subgroups, cosets, actions...

Def: a subset  is called a subgroup, written  if H is also a group under the 
multiplication inherited from G.
[We could also write  to explicitly allow the case , but many authors use  
subset and subgroup notation as above to include this possibility.]

Def: the right cosets of H in G (for ) are the sets , namely for a 
fixed , with  ranging over (all) elements of H.

--> Work out the subgroups of , including A = <(1 2 3)> and D = <(1 2)>, where the 
angle notation refers to the smallest group containing the elements shown. This is also 
called the subgroup generated by such elements.



--> Work out the right cosets of A.

Same question for right cosets of D, and left cosets of A and D.

--> Which sets of cosets are equal??? 

<----->

 

 

 

We saw A = <(1 2 3)>'s left and right cosets were identical, but not so for D.
Later, we see that this is equivalent to noting that A is normal in G.

 

Lagrange's theorem since the elements of G split into distinct cosets  for a 
subgroup , it follows that     , namely the order of a group is a multiple of  
the order of a subgroup

 

 acts on the  cosets of H in G by permuting them. For example, for , any given 

coset  is turned into the coset  (posibly a different coset)

This creates a map from G to the symmetric group 

--> If you only knew the image of this map, would that give you enough information to 
understand G as a group?

 

<-----> 



Answer:

Definitely yes, if , because then you can reconstruct G's entire 
multiplication table from how its right multiplication permutes its elements, 
which are just cosets of {1}.

No if H = G, because then you are just permuting a single object. (BUT: if G was 
already just 1, then yes, this shows the whole trivial structure of G.)

If , it depends on how much structure of G gets obscured!

Where groups sit in math  

Examples:

All finite groups can be thought of as permutation groups. When you have a 
permutation of dimension (in a vector space), that is a particular kind of linear 
transformation. So group theory can sit inside linear algebra...

Finite field extensions  are characterized by the ways you can transform F 
while leaving f fixed. These form Galois groups and are a particularly clear 
application

More generally, there are many cases in mathematics where elements of a group 
correspond to "maps" of elements in another space that respect certain 
properties of these elements, whether they are rigid transformations, 
differentiable maps, or many other possibilities. The group will depend on what 
kind of maps are allowed

Another very general use for groups is as a way of describing elements of another 
set. For example, you can define groups that describe say the 217-dimensional 
structure of a space. This forms a map from spaces to groups, in which case 
problems about spaces can be turned into problems about groups - a very 
important part of algebraic topology

 

 



Speed-dating popular kinds of groups; some of their properties  

The last two of these are intractable ("unsolvable", in certain senses.)
Much of the subject of group theory involves understanding "harder" groups by building 
them out of simpler ones.

Symmetric groups 

Linear groups - also, groups of "Lie type": linear-like groups over finite fields...

"Easy" groups: abelian (commutative)

p-groups

All finite groups

Free groups, and groups via presentations

<Explained more in class>

Some interesting facts about such types of group  

Groups as maps:  

Every finite group is a subgroup of a symetric group

Every symmetric group can be "represented" as a linear group

Examples of linear groups: groups of certain n*n matrices with coefficients in a 
field F (like R, the reals...): 

Commutative (abelian) groups  

We will use the notation  for the (additive) group of integers mod n

Finite abelian groups  have a clear classification that's kind of like the unique 
factorization of integers: there is a unique way you can write 

, where 



p-groups  

p-groups are groups of order . They can be very complicated, but if  (i.e. 
 divides the order of G), then G has a subgroup of this order. There are very 

important Sylow theorems about these

p-groups allow rich structure, which has the side effect of there being so many 
different ones!
A large majority of groups with order under 2000 have orders a power of 2 - of 
which the largest number have the highest such power, namely 1024

Free groups and presentations  

<Intended for class, but barely mentioned>

Free group, their presentations, and a presentation of the dihedral group , 
with rotation  and reflection : 
Some authors write  for this group of order 2n
[We noted  is the symmetry group  of the regular 3-gon (aka triangle)]

Crucial ways to understand how groups keep and break 
"symmetry"

 

Non-commutativity (related to non-identity commutators)  

Review asymmetry of multiplication table of 

Commutators  

We discussed how these would be 1 if g and h commuted, but how the deviation from 1 is 
a way to undertand how g and h "twist" each other.
Also discussed: how commutators are a great way to limit results in case g or h are within 
known normal subgroups [One key technique for solving Rubik's cube type problems]



Homomorphisms  

In group theory, the only kinds of maps f we consider from a group H to a group G 
preserve products. So if , let .

For  to be a homomorphism, we need 
, 

so f must "translate" multipication within H into multiplication within G.
This is emphasized by showing the appropriate group as a subscript to each 
multiplication. 

We can write this as a "commutative diagram." Note: everything in the top row happens in 
H, and everything in the bottom row (including its multiplication!) happens in G:

--> Show this implies f(1) = 1' (for neutral elements ), and 

 

If you keep times'ing by g, you might get back to 1. If so, the smallest natural number n 
such that  is called its order. If not,  order is infinite.

This lets you define the subgroup  generated by the set .
 is said to be cyclic, because it just consists of all integer powers  of 

--> If g has finite order n, show this is a subgroup. In particular, show . 

--> If g's order is infinite, we use the notation , and then show  again 
is just the set of all integer powers of g.

 



Conjugacy  

--> Identify which elements  in  are conjugate, namely, there exists an element 
 such that 

--> Can you generalize this to higher ?

<Discussed in class>

--> Given elements  in cycle notation, how can you write down the conjugate 
above?

<----->

 

Answer - convince yourself this works! in the cycle notation of , replace every symbol  
by the symbol , namely what the inverse of g takes x to!

Conjugation by a fixed element g is an isomorphism on G. From this cycle notation above, 
you have even more explicit evidence: since conjugates have the same cycle structure, 
they have the same order.  

Normal subgroups  

We saw above that left and right cosets differ for certain subgroups, but not for others.

Def: A subgroup  is normal, written  if for any , .

--> Show  is equivalent to left and right cosets of  corresponding for all :

This is a very special and important condition that distinguishes subgroups you can 
"divide by", giving the sequence of two homomorphisms: , because of a 
surprising fact:



Def in a homomorphism , the set  is called the 
kernel

Theorem: "kernels are normal, and all normals are kernels":
A) The kernel  of a such a homomorphism  is a normal subgroup of .
B) Every normal subgroup  is the kernel of an isomorphism from  onto the group of 
cosets of  in 

Def:  always has "trivial" normal subgroups  and .
If G has no other normal subgroups, we say it is simple

We are not near to being able to classify all finite groups. But one of the major math 
triumphs of the 20th century was to work out all the finite simple groups

Examples of simple groups:  for p prime

 for  (Here A means the "alternating group", namely the elemends of  
of "even parity")

"Parity" is just the number mod 2 of of 2-cycles in a cycle representation of an element 
 (which turns out to be well-defined.)

In symmetries of simplexes, we say that parity captures whether a mirror reflection is 
needed.

--> Try to show  is simple by noting that and normal subgroup  would have to 
consist of complete conjugacy classes of elements of . Why is this tricker than just 
considering conjugacy classes as we have worked out for ?

<----->

Caution: just because  are conjugate in  does that mean they're conjugate in ?

A better way is to show  is simple (for ) is to show there is a "parity" 
homomorphism from  with kernel . 

We violate usual introduction to groups by not showing a 



We violate usual introduction to groups by not showing a 
(standard) Rubik's cube

 

[In class, however, we did trot out a whole box full of Rubik's variants, including ones that 
were surprisingly isomorphic or non-isomorphic]

Some ideas we discussed

The "unreasonable" success of commutators

Subgroup structure

Characterizing the complexity and solution of the tetrahedral puzzle of "size 3"

More machinery & examples, but ran out of time...  

Sylow theorems

If  for prime  that does not divide , any subgroup of order  is called a 
p-Sylow subgroup

G always has these for any prime that divides its order

The p-Sylow subgroups for G are all conjugate

Their number is 1 mod p and divides m

These sound like very specific and technical, but they allow many conclusions, such as:
==> Show there is no simple group of order 28, by proving 7-Sylow subgroups are normal

p-groups

p-groups have nontrivial center (elements that commute with everything.) A 
center is normal, so p-groups can be "decomposed"

Group presentations

==> Try the group presentation challenge in section 2.2 of "Crash course" (p.32)



 

 

Conclusion  

You now know enough group theory defs to be dangerous

More reliable use comes from practice with standard facts and working though 
many examples (e.g. finding all the groups up to order 15) 

But you do know enough about symmetric groups to be able to work with any 
group that can be described with permutations - which all groups can! 
Downside: symmetric groups still have a lot of mystery.

You will see groups all over the place in math, and even in unexpected places like 
crystal structures in chemistry. Hopefully, today's talk has whetted your appetite

References:  

Cameron, 2016: "A Crash Course on Group Theory" (omits proofs, but a useful 
guide for study)

Goodwin/Morrow?, 2019: "An introduction to the classification of finite groups" 
(19 pages, so omits proofs)

Kurzweil & Stellmacher, 2004: "the theory of finite groups" There are many, 
many introductions to group theory, including in almost any intro text on 
("modern") algebra. This is just one reasonable & reasonably recent text.)

Interestingly, the "Princeton companion to mathematics" (Gowers, ed., 2008) 
doesn't have a major section just on groups, because they come up in so many 
other places. They do introduce groups first as symmetries.
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