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1 Overview
Please note the following conventions: all Roman-alphabet variables (a,b,c, etc.) are
integers, and p and q denote distinct primes.

The RSA1 encryption method is a type of public-key cryptography, which has the fol-
lowing amazing property: The method of encoding (putting a message into code) is known
to everyone, but nevertheless it is virtually impossible to decode the message (restore it
from coded form back to the original text).

The way RSA encryption is done is quite simple.

1. A modulus n is chosen, known to all. Also, an encoding exponent e is chosen, also
known to all. Typically, n is very large (greater than 10100).

2. The message that is to be encoded is converted from letters to numbers, in a standard
way, known to all. If needed, the message is broken down into blocks so that each
block is an integer smaller than n.

1RSA stands for Rivest-Shamir-Adelman, the names of the inventors of the algorithm.
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3. Each block x is encoded by raising it to the power e modulo n. Thus the encoded
block is the number

y≡ xe (mod n),

where it is understood that y is a positive integer less than n.

4. The encoded block y can be decoded by raising it to the decoding exponent d. This
decoding exponent is not public; it is only known to Headquarters. This exponent d
is cleverly chosen so that

yd ≡ (xe)d ≡ x (mod n),

and thus raising the encoded block to this exponent magically recovers the original
number block x.

5. It is now a simple matter to convert the number into letters, and we are done.

There are two important things to understand: first, how to find the magical decoder d,
when we are given n and e; and second, why this can be virtually impossible to do under
certain circumstances, unless one knows the prime factorization of n.

2 Encryption Using Prime n

Let’s practice with a simple example using a very small value of n.

2.1 A Small Prime n

Suppose that n= 17 and e= 13. To encode the number x= 11, we compute 1113 (mod 17).
This can be done by hand quite easily.

11≡−6 (mod 17)
=⇒ 112 ≡ (−6)2 = 36≡ 2 (mod 17)
=⇒ 1112 ≡ 26 = 64≡−4 (mod 17)
=⇒ 1113 ≡−4 ·11 =−44≡ 7 (mod 17).

(Alternatively, this could be done with Sage.)
Thus the encoded number y = 7. In this case, the magical decoding exponent d = 5.

Let’s check this: We wish to verify that y5 (mod 17) is equal to x, or 11. Once again, let’s
do it by hand, for practice.

y2 ≡ 72 ≡ 49≡−2 (mod 17)
=⇒ y4 ≡ (−2)2 = 4 (mod 17)
=⇒ y5 ≡ 7 ·4 = 28≡ 11 (mod 17),

and thus y5 ≡ x (mod 17).
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2.2 A Problem From the 2003 Bay Area Math Meet
A fairly difficult question on the written exam (answered correctly, nevertheless, by 15%
of the students!) asked for the smallest positive integer x such that x801 had a remainder of
10 when divided by 2003. In other words, find x, given that

y≡ x801 ≡ 10 (mod 2003).

In this case, n = 2003,e = 801. It turns out that the decoding exponent d is equal to 5.
Thus,

x≡ y5 ≡ 105 = 100000 (mod 2003).

It is easy to reduce this to a positive integer less than 2003:

100000 = 2000 ·50≡−3 ·50 =−150≡ 2003−150 = 1853 (mod 2003).

It is nearly impossible to verify, by hand,that this is correct, since 1853801 is equal to
the 2,618-digit number

37 000 779 579 914 319 314 318 131 189 773 425 602 700 009 097 498 112 257 994
404 138 331 010 037 402 843 987 765 995 239 895 994 760 986 934 902 426 445 563 506
450 012 524 939 518 079 533 355 344 403 289 230 060 691 452 197 479 033 754 929 001
490 496 399 001 889 134 127 696 317 744 476 276 740 323 420 455 038 882 424 967 565
382 368 163 830 368 698 086 817 986 264 163 801 604 821 073 966 384 914 116 891 177
932 506 615 717 243 801 999 947 468 729 165 741 637 951 299 696 728 391 815 810 590
426 188 522 654 476 124 897 378 227 118 454 005 750 822 594 204 854 129 566 033 033
218 189 617 737 238 412 748 059 005 900 240 890 990 033 646 171 977 926 175 331 874
986 389 171 474 017 026 390 973 274 200 909 267 040 769 168 301 697 720 762 006 518
721 662 350 025 140 700 646 537 522 886 964 302 072 559 576 590 915 715 699 155 292
960 396 357 675 199 015 870 770 372 891 863 558 816 899 266 797 328 623 924 886 401
236 685 201 357 467 374 966 383 981 962 910 782 807 062 839 336 824 056 873 914 841
471 357 050 448 929 449 662 091 517 716 872 016 035 746 044 485 311 819 730 394 425
780 826 111 341 038 874 258 153 663 910 186 326 272 206 250 006 309 878 051 149 405
405 210 728 966 599 980 977 012 936 519 540 464 212 702 615 256 256 661 805 374 072
257 485 790 580 991 169 679 787 276 218 167 521 432 258 009 581 337 511 201 578 721
602 778 859 648 554 250 963 101 240 377 132 290 464 058 330 083 550 956 329 915 400
710 964 884 011 620 293 869 468 960 512 531 047 386 441 041 751 148 337 783 673 985
586 816 919 272 625 212 265 682 954 101 233 974 631 444 730 236 997 855 859 136 655
335 086 013 089 451 191 544 284 581 767 340 555 895 984 228 575 854 893 655 163 780
459 600 008 606 115 881 582 873 437 361 957 861 304 577 228 983 679 900 683 962 712
259 305 969 039 744 455 804 252 160 066 514 148 090 586 658 328 420 353 222 184 052
447 888 546 766 611 658 190 345 901 259 491 308 492 506 222 946 820 025 802 471 799
543 123 682 982 681 778 404 755 316 235 102 814 829 045 157 809 214 543 547 368 219
017 495 049 908 693 270 362 682 293 321 507 403 808 256 913 020 746 337 859 961 612
317 840 723 274 108 643 780 577 472 843 509 537 720 745 611 797 035 476 467 977 155
654 606 113 407 201 819 746 441 958 063 941 612 742 077 462 096 768 717 890 327 532
006 692 657 374 628 103 727 155 700 518 848 349 342 798 688 211 045 350 062 293 902
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209 303 457 619 747 486 725 304 027 741 279 521 121 158 509 960 237 434 506 042 762
141 442 113 674 405 894 801 185 432 988 343 807 394 974 373 264 032 617 903 916 398
343 367 325 236 605 152 673 336 791 113 948 192 984 462 353 615 033 880 466 888 060
333 605 952 190 969 514 431 608 524 480 765 256 062 930 612 631 519 511 331 501 529
634 852 418 817 082 249 853 380 494 599 385 295 662 992 768 960 389 195 759 159 545
424 752 063 188 763 993 284 913 403 291 295 385 564 865 535 662 562 060 864 503 119
388 692 835 167 389 586 216 433 157 607 652 490 219 986 139 595 225 844 276 863 683
664 773 967 735 914 337 798 678 014 205 755 259 934 943 323 385 813 848 421 119 894
972 761 096 961 719 886 307 812 711 028 088 134 752 272 158 286 979 103 256 702 254
312 717 540 490 302 438 060 639 411 563 118 610 126 596 892 694 525 414 738 689 229
907 613 127 414 007 570 076 323 039 330 820 280 888 881 126 817 504 292 772 804 432
899 248 871 554 500 865 425 470 648 957 000 582 476 596 216 545 006 016 029 507 741
320 273 205 687 811 587 126 794 021 758 817 867 374 390 251 347 530 921 789 220 437
616 409 649 682 992 055 020 073 300 268 566 609 853.

We now need to divide this monster by 2003, and check to see that the remainder indeed is
10.

Of course, this can be verified quickly using Sage. When we ask it to compute mod(1853^801, 2003)
it outputs 10 in a blink of an eye. But the interesting question is, how did the BAMM con-
testants deduce the decoding exponent was 5 without using a computer?

Because 2003 is a prime, we can use Fermat’s Little Theorem, which says that

a2002 ≡ 1 (mod 2003),

for all a that are not multiples of 2003. Consequently, if a is not a multiple of 2003, we
have

a4004 = a2002·2 = (a2002)2 ≡ 12 = 1 (mod 2003),

and thus
a4005 = a ·a4004 ≡ a ·1 = a (mod 2003).

The reason we are interested in the exponent 4005 is because 4005 = 801 · 5. Hence for
any a which is not a multiple of 2003,

(a801)5 = a4005 ≡ a (mod 2003).

This verifies that 5 is the decoder exponent corresponding to the encoder exponent 801.
If you raise something to the 801st power, and then raise that to the 5th, you get back to
where you started (mod 2003).

2.3 The General Case for n = p

Let’s solve the problem in general for n = p, a prime. Suppose we are given y ≡ xe

(mod p). How can we find the decoder exponent d that recovers x? By Fermat’s Little
Theorem, as long as x 6≡ 0 (mod p), then

xp−1 ≡ 1 (mod p).
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Thus, for any positive integer t,

(xp−1)t ≡ 1 (mod p).

Multiplying by x, we get
x(xp−1)t ≡ x (mod p),

which is equivalent to
x(p−1)t+1 ≡ x (mod p),

for any positive integer t. Since we are given y ≡ xe (mod p), and want to raise y to an
exponent d that gives us x, we need to

find d so that ed is equal to (p−1)t +1 for some integer t. (2.1)

If we can accomplish this, we will have

yd ≡ (xe)d = xed = x(p−1)t+1 ≡ x (mod p).

But this is easy to do. Let’s try some examples.

(a) p = 17,e = 13. This was the first example. We need to find d so that 13d = 16t +1.
By inspection, it is easy to guess d = 5.

(b) p = 2003,e = 801. This is the BAMM problem. We need to find d so that 801d =
2002t +1 for some t. Again, it is easy to guess d = 5.

(c) p = 79,e = 19. We must find d such that 19d = 78t + 1. We can perform the Eu-
clidean Algorithm, and then backtrack:

78 = 4 ·19+2
19 = 9 ·2+1.

Hence

1 = 19−9 ·2
= 19−9(78−4 ·19)
= 37 ·19−9 ·78,

and d = 37. In other words, if y≡ x19 (mod 79), then x≡ y37 (mod 79)

The condition (2.1) that ed is equal to (p−1)t +1 for some integer t can be formulated
more cleanly. This is the same as saying that ed must be congruent to 1 modulo (p−1). In
other words,
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If
y = xe (mod p),

then
x≡ yd (mod p),

where d is chosen so that

ed ≡ 1 (mod p−1). (2.2)

The only problem with the method used above is that it is too easy to find d. If you
know p and e, then you can always solve (2.2). After all, you are merely computing the
multiplicative inverse of e modulo p−1. As long as e and p−1 are relatively prime, this
can be computed quickly with the Euclidean Algorithm, or even faster, using the computer.
The mod command works beautifully, using the exponent −1. Sage is smart enough to
understand that. For example, mod(19^( -1), 78) will output 37 in a flash, since

19 ·37≡ 1 (mod 78)

is the same as saying
19−1 ≡ 37 (mod 78).

But we do not need to restrict ourselves to the n = p case. In place of Fermat’s Little
Theorem, we will use Euler’s Extension of Fermat’s Little Theorem, which says that if
x⊥ n, then xφ(n) ≡ 1 (mod n).

3 Encryption Using n = pq

As we mentioned at the end of Section 2, encryption using n = p fails, since it is easy to
compute the decoder d—it is just the multiplicative inverse of the encoder e, modulo p−1.
But what if n = pq, where p and q are distinct primes?

Suppose that y≡ xe (mod n). By Euler’s Theorem, xφ(n)≡ 1 (mod n), and, rehashing
the ideas in Section 2, we have, for any integer t,

(xφ(n))t ≡ 1 (mod n),

so
xtφ(n)+1 ≡ x (mod n).

Thus, if we can find d such that
ed = tφ(n)+1 (3.3)

for some integer t, we will be done, for then

yd ≡ (xe)d = xed = xtφ(n)+1 ≡ x (mod n).

But (3.3) is equivalent to saying that

ed ≡ 1 (mod φ(n)),

in other words,
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The decoder d is the multiplicative inverse of e modulo φ(n).

3.1 An Example with Small Primes
Suppose n = 77,e = 17. We are given y≡ xe (mod n), and wish to find x. Since n = 7 ·11,
we compute φ(77) = 6 ·10 = 60. We need to find d so that

17d ≡ 1 (mod 60).

We shall find this using the Euclidean Algorithm. We have

60 = 3 ·17+9
17 = 1 ·9+8

9 = 1 ·8+1,

and thus

1 = 9−8
= 9− (17−9)
= 2 ·9−17
= 2 · (60−3 ·17)−17
= 2 ·60−7 ·17.

7 ·17 =−1+2 ·60,

so 7 ·17≡−1 (mod 60). Thus

−7 ·17≡+1 (mod 60),

so the multiplicative inverse of 17 modulo 60 is equal to −7, or 53. So 53 is our magical
decoding exponent.

While the above Euclidean Algorithm work was pretty tedious, in practice the Sage
command mod(17^(-1),60)would yield the answer 53 instantly. An alternative method
is to use the xgcd command, the “extended greatest common divisor” command. For ex-
ample, the output of xgcd(17,60) is the triple (1,-7,2), which says that the greatest
common divisor of 17 and 60 is 1, and that (−7)(17)+2(60) = 1. Hence the multiplicative
inverse of 17 (mod 60) is −7, and converted to a positive number, this is 53.

3.2 What if p,q are HUGE?
Suppose that n = pq, with p,q both very large, on the order of 10100, and suppose that this
factorization is not known to the general public. Then even if e is known to the public, there
is no easy way to find d, for d is the multiplicative inverse of e modulo φ(n), but

You need to know p and q in order to find φ(n)!



Notes on RSA BMC Oct 2022 8

And there is no polynomial-time way known, at the present time, to factor a large number;
there is not much that is better than simple division-by-odd-numbers-less-than-the-square-
root. And for all practical purposes, this takes forever.

That’s why RSA is such a great idea; truly a world-changing application of mathemat-
ics. For the first time in history, it is possible for just about anyone to create an unbreakable
code that is easy to use. All you need is a good supply of super-big primes. And they are,
in general, not too hard to find. But that is another story.

Computational Issues

In general, both n and e are gigantic numbers (it is easy to pick e to be a large prime be-
tween p and q, which then guarantees that e⊥ φ(n) (WHY?), and the encoding procedure
will take a number x < n and raise it to the e power modulo n. This seems computationally
“expensive," but it is not. Here’s a simple concrete example with very small numbers. Sup-
pose you wanted to compute 1999 (mod n). Instead of performing the one exponentiation
and then finding the remainder, we first compute 192 (mod n). Call this number r, and
note that it is smaller than n. Now compute r2 (mod n). Then square that, etc. In other
words, we compute 192,194,198,1916, . . .. We only need to do this a few more times to
get close to the target exponent of 99. Then we consider 99 in base two and multiply the
remainders that we have computed. Specifically, we have

99 = 64+32+2+1,

and hence
1999 = 19641932192191.

In general, to compute ae (mod n), we need only first compute a,a2,(a2)2 = a4, . . .
(mod n) and we only need at most log2 e computations. Then to find the precise remainder,
we must multiply some of these (depending on e in base-2), with at most log2 e multiplica-
tions.

So it is easy to raise a 100-digit number to a 100-digit exponent and find the remainder
modulo a 100-digit number. Try it!

The other computational issue is finding the magic decoding exponent d. But this
requires solving the equation ed ≡ 1 (mod φ(n)). If you do this by hand, you need to
do the Euclidean Algorithm and then work it out in reverse. This also takes very little
computational effort. In general, the number of steps is “logarithmic.” WHY?

In sum the only hard computation—effectively impossible until quantum computing or
other mathematical breakthroughs occur—is factoring n if it is a very large number.
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3.3 Exercises
I am providing the answers to some of these so that you can test yourself.

1 For the following values of n and e, find the magic decoding exponent d by hand (feel free
to use a calculator, and you can check your work with the computer.)

(a) n = 17,e = 5. (Ans: d = 13)

(b) n = 21,e = 11. (Ans: d = 11)

(c) n = 391,e = 19. (Ans: d = 315)

2 Use the computer to find the decoder for n = 62884891,e = 7937. Use the computer to
check that your decoder actually works, by encoding a value x < n, and then decoding it.
(Ans: d = 14859809.)

3 What is wrong (if anything), with just letting n equal a prime, instead of a product of two
distinct primes? Is the RSA method still effective?

4 (Challenging). The RSA method finds a decoder exponent d such that ed ≡ 1 (mod φ(n))
and uses Euler’s extension of Fermat’s Little Theorem, namely that if x⊥ n, then xφ(n) ≡ 1
(mod n). But what if x is NOT relatively prime to n? Since n = pq, this would only happen
if x is a multiple of p or a multiple of q (it cannot be a multiple of both, since x has to be
smaller than n). Show that in this case, that even though it is NOT the case that xφ(n) ≡ 1
(mod n), we will still have xed ≡ x (mod n).


