
ORDERS OF UNITS IN MODULAR ARITHMETIC

KEITH CONRAD

1. Introduction

If a mod m is a unit then aϕ(m) ≡ 1 mod m by Euler’s theorem. Depending on a, it might
happen that an ≡ 1 mod m for a positive integer n that is smaller than ϕ(m).

Example 1.1. Let m = 7. The following table shows that the first time a unit mod 7
has a power congruent to 1 varies with the unit. While Euler’s theorem (or Fermat’s little
theorem) tells us that a6 ≡ 1 mod 7 for a 6≡ 0 mod 7, we see in the table that the exponent
6 can be replaced by a smaller positive exponent when a 6≡ 3 or 5 mod 7.

k 1 2 3 4 5 6

1k mod 7 1
2k mod 7 2 4 1
3k mod 7 3 2 6 4 5 1
4k mod 7 4 2 1
5k mod 7 5 4 6 2 3 1
6k mod 7 6 1

Example 1.2. Let m = 15. Since ϕ(15) = 8, Euler’s theorem says a8 ≡ 1 mod 15 when
(a, 15) = 1. But in fact exponent 8 is higher than necessary: the table below shows we can
use exponent 1, 2, or 4.

k 1 2 3 4

1k mod 15 1
2k mod 15 2 4 8 1
4k mod 15 4 1
7k mod 15 7 4 13 1
8k mod 15 8 4 2 1
11k mod 15 11 1
13k mod 15 13 4 7 1
14k mod 15 14 1

The fact that sometimes an ≡ 1 mod m where 0 < n < ϕ(m), depending on a, leads us
to give a name to the first exponent that fits this condition when the base is a.

Definition 1.3. The order of a unit a mod m is the least n ≥ 1 such that an ≡ 1 mod m.

Example 1.4. By the table in Example 1.1, 2 mod 7 has order 3, 3 mod 7 has order 6, and
4 mod 7 has order 3.

Example 1.5. By Example 1.2, we see 2 mod 15 has order 4 and 11 mod 15 has order 2.

Example 1.6. Always 1 mod m has order 1. If (a,m) = 1 and a 6≡ 1 mod m then a mod m
has order greater than 1.
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Example 1.7. A unit mod m and its inverse (like 2 mod 15 and 8 mod 15) have the same
order, since their powers are the same except in reverse order.

Example 1.8. For a fraction a/b in reduced form with (10, b) = 1, the number of digits in
the repeating part of its decimal expansion is the order of 10 mod b. We will discuss this in
Section 4.

We do not define the order of a mod m when (a,m) > 1. Why? Because in order for the
condition an ≡ 1 mod m to hold for some n ≥ 1 the number a must be relatively prime to
m: if an ≡ 1 mod m then an = 1 + md for some integer d, so any common factor or a and
m is a factor of 1 and thus is ±1.

To emphasize that the order of a mod m is the least n ≥ 1 making an ≡ 1 mod m, we
can express the definition of a mod m having order n like this:

an ≡ 1 mod m, aj 6≡ 1 mod m for 1 ≤ j < n.

Example 1.9. If m > 2 then −1 mod m has order 2 since (−1)2 ≡ 1 mod m and (−1)1 =
−1 6≡ 1 mod m. When m = 2, −1 ≡ 1 mod 2, so −1 mod 2 has order 1.

The order of any unit mod m is at most ϕ(m), by Euler’s theorem. We will see that
the relation is stronger than an inequality: the order is a factor of ϕ(m). For instance, in
Example 1.1 we see that the order of every unit mod 7 is a factor of 6.

Warning. If an ≡ 1 mod m, this does not mean a mod m has order n, since the exponent
might not be as small as possible. For example, (−1)4 ≡ 1 mod m, but this doesn’t mean
−1 mod m has order 4, and in fact it does not since (−1)2 ≡ 1 mod m.

In Section 2 we will relate the order of a mod m to periodicity properties of the sequence
of powers 1, a, a2, a3, . . . mod m. In Section 3 we will see how the order of a mod m tells us
the order of any power ak mod m. In Section 5 we will discuss the order of a product of two
units if we know the order of each unit already. Some applications of orders, including to
decimal periods, are in Section 4. Finally, in Section 6 we will show that for prime p there
is a unit modulo p with order p− 1.

2. Orders, divisibility, and periodicity

To see how closely the order of a mod m is tied up with the whole sequence of powers
a, a2, a3, . . . mod m, let’s look at the first 20 powers of each unit mod 7:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1k mod 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2k mod 7 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4
3k mod 7 3 2 6 4 5 1 3 2 6 4 5 1 3 2 6 4 5 1 4 5
4k mod 7 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2
5k mod 7 5 4 6 2 3 1 5 4 6 2 3 1 5 4 6 2 3 1 2 3
6k mod 7 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1

Each row looks periodic. More precisely, the order of a mod 7 tells us the number of
different powers of a mod 7 before the powers start to repeat. In general, we want to
show that if a mod m has order n then the sequence of powers of a mod m looks like
1, a, a2, . . . , an−1, 1, a, a2, . . . mod m with a repeating block of length n and this repeating
block is as small as possible:

(1) (Repeating Block) Every power of a mod m is ar mod m where 0 ≤ r ≤ n− 1,
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(2) (Minimality) The powers 1, a, a2, . . . , an−1 mod m are distinct.

Theorem 2.1. Let a mod m have order n. For k ≥ 0, ak ≡ 1 mod m if and only if n | k.
Proof. If n | k, say k = nn′, then ak = ann

′
= (an)n

′ ≡ 1 mod m since an ≡ 1 mod m.
Now assume ak ≡ 1 mod m. We want to prove n | k. Using division with remainder we

can write k = nq + r where q and r are integers and 0 ≤ r < n. Our goal is to show r = 0.
We have

ak = anq+r = (an)qar =⇒ ak ≡ (an)qar mod m.

The left side of the congruence is 1 by hypothesis and an ≡ 1 mod m by part of the definition
of n being the order of a mod m. Therefore the congruence becomes 1 ≡ ar mod m. Since
0 ≤ r < n and n is the least positive exponent that makes a power of a congruent to
1 mod m, r is not positive. Thus r = 0, so k = nq, which says n | k. �

Corollary 2.2. If (a,m) = 1 and a mod m has order n then n | ϕ(m).

Proof. By Euler’s theorem, aϕ(m) ≡ 1 mod m. Now apply Theorem 2.1. �

Example 2.3. Every unit a mod 19 satisfies a18 ≡ 1 mod 19, so its order must be a factor
of 18, and hence is 1, 2, 9, or 18. Let’s use this to determine the order of 2 mod 19. Certainly
it is not 1. It is not 2 either, since 22 = 4 6≡ 1 mod 19. Could the order be 9? We can find
29 by repeated multiplication by 2, starting from the familiar power 25:

25 = 32 ≡ 13 ≡ −6 mod 19 =⇒ 26 ≡ −12 ≡ 7 mod 19

=⇒ 29 = 23 · 26 ≡ 8 · 7 = 56 ≡ −1 mod 19.

Thus 29 6≡ 1 mod 19. The order of 2 mod 19 is not 1, 2, or 9, so it has to be 18. We don’t
have to check this directly since we have instead eliminated all the other potential options.

When an ≡ 1 mod m, the powers of a mod m repeat themselves every n turns: for any
integers q ≥ 0 and ` ≥ 0,

(2.1) a`+nq = a`anq = a`(an)q ≡ a`(1q) ≡ a` mod m.

This next theorem and corollary show this repetition doesn’t happen more often than every
n turns.

Theorem 2.4. Let a mod m have order n. For integers k and ` ≥ 0, ak ≡ a` mod m if
and only if k ≡ ` mod n.

Proof. Without loss of generality, k ≤ `. Since a mod m is invertible,

(2.2) ak ≡ a` mod m⇐⇒ ak ≡ aka`−k mod m⇐⇒ a`−k ≡ 1 mod m,

and Theorem 2.1 says a`−k ≡ 1 mod m if and only if n | (`− k), or k ≡ ` mod n. �

Corollary 2.5. Let a mod m have order n. Then every power of a mod m is ar mod m for
a unique r from 0 to n− 1.

Proof. This will be another application of division with remainder.
Given an arbitrary power ak, write k = nq+r where 0 ≤ r ≤ n−1. Then ak ≡ ar mod m

by (2.1) with ` = r. Thus every power of a mod m is ar mod m where 0 ≤ r ≤ n − 1. If
0 ≤ r < s ≤ n− 1 then we ar 6≡ as mod m because r 6≡ s mod n (Theorem 2.4). �

We have shown the powers 1, a, a2, . . . , an−1 mod m are distinct from one another and
describe all possible powers of a mod m without repetition. This gives a nice combinatorial
interpretation of the order of a mod m: it is the number of distinct powers of a mod m. For
example, 2 mod 7 has order 3 and there are 3 different powers of 2 mod 7.
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3. Orders of powers

When a mod m has order n, what is the order of a power ak mod m? Since (ak)n =
(an)k ≡ 1k ≡ 1 mod m, the order of ak mod m divides n by Theorem 2.1. Which factor of
n is it?

Example 3.1. Suppose a mod m has order 12, so a12 ≡ 1 mod m and ai 6≡ 1 mod m for
i = 1, 2, . . . , 11. Any power of a mod m has order that is a factor of 12. It is plausible
that a2 mod m has order 6: since a mod m takes 12 powers until it first cycles around to
1, a2 mod m takes only 6 powers to get there. Thus a2 mod m has order 6 = 12/2. On the
other hand, it is absurd to say a8 mod m has order 12/8, as 12/8 is not an integer. The
successive powers of a8 mod m are

a8 6≡ 1 mod m, (a8)2 = a16 ≡ a4 6≡ 1 mod m, (a8)3 = a24 = (a12)3 ≡ 13 ≡ 1 mod m,

so a8 mod m has order 3, which we can write as 12/4. What we divide 12 by to get the
order of a8 mod m is not 8, but the largest factor that 8 has in common with 12, namely 4.

Theorem 3.2. Let a mod m have order n and k be a positive integer.

(1) If k | n then ak mod m has order n/k.
(2) If (k, n) = 1 then ak mod m has order n. That is, raising a mod m to a power

relatively prime to its order doesn’t change the order.
(3) For general k ∈ Z+, ak mod m has order n/(k, n).

The third part includes the first two parts as special cases (if k | n then n/(k, n) = n/k,
and if (k, n) = 1 then n/(k, n) = n), but we state those special cases separately because
they are worth knowing on their own and because they can be proved independently of the
general case. Understanding the proof of the first two parts of the theorem will help you
better understand the proof of the third part. Basic to everything will be Theorem 2.1.

Proof. Let t be the (unknown) order of ak mod m, so (ak)t ≡ 1 mod m and t is the minimal
positive exponent that fits this congruence. We want to show t = n/k if k | n, t = n if
(k, n) = 1, and t = n/(k, n) in general.

1) We assume k | n. The condition (ak)t ≡ 1 mod m is the same as akt ≡ 1 mod m, so
n | kt by Theorem 2.1. Thus n ≤ kt, so n/k ≤ t. We also have the reverse inequality: since

(ak)n/k = ak(n/k) = an ≡ 1 mod m, t ≤ n/k by the definition of what the order of a unit is.
From n/k ≤ t and t ≤ n/k, we have t = n/k.

2) We assume (k, n) = 1 and want to show ak mod m has order n.
The equation (ak)t ≡ 1 mod m is the same as akt ≡ 1 mod m, so n | kt by Theorem 2.1.

Since n and k are relatively prime, from n | kt we conclude that n | t, so n ≤ t. We have
the reverse inequality too: (ak)n = akn = (an)k ≡ 1k ≡ 1 mod m, so t ≤ n by the definition
of the order of a unit. Therefore t = n.

3) In the general case, for each k ≥ 1 we want to show t = n/(k, n). The congruence
(ak)t ≡ 1 mod m is the same as akt ≡ 1 mod m, which is the same as n | kt by Theorem
2.1. So t is the smallest positive integer such that n | kt.

Factor (k, n) out of both k and n: set k = (k, n)k′ and n = (k, n)n′ with k′, n′ ∈ Z. Then
(k′, n′) = 1. We have

n | kt =⇒ (k, n)n′ | (k, n)k′t =⇒ n′ | k′t.

Since (k′, n′) = 1, we get n′ | t, so n′ ≤ t.
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We have the reverse inequality too:

(ak)n
′

= akn
′ !

= ank
′

= (an)k
′ ≡ 1k

′ ≡ 1 mod m.

Let’s explain the equality with the exclamation point: kn′ = nk′ since both products
equal kn/(k, n). From (ak)n

′ ≡ 1 mod m we have t ≤ n′. Earlier we saw n′ ≤ t, so
t = n′ = n/(k, n) and we are done. �

Example 3.3. If a mod m has order 12, here is a list of orders of powers of a mod m. The
order of ak mod m is equal to 12/(k, 12). Compute successive powers of ak mod m for each
k to verify directly that the values in the table are correct.

k 1 2 3 4 5 6 7 8 9 10 11 12

order of ak mod m 12 6 4 3 12 2 12 3 4 6 12 1

Example 3.4. If a mod m has order 12 then ak mod m has order 12 precisely when
(k, 12) = 1. Look at the table above and notice 12 appears under k = 1, 5, 7, and 11,
which are relatively prime to 12.

4. Applications of orders

As a first application of orders, we determine all consecutive powers of 2 and 3.

Theorem 4.1. The consecutive powers of 2 and 3 in Z+ are (1, 2), (2, 3), (3, 4), and (8, 9).

Proof. The condition that 2m and 3n (where m and n are nonnegative integers) are consec-
utive is that 2m − 3n = 1 or 3n − 2m = 1. In both cases we will list the solutions for small
m and then prove there are no solutions for larger m.

Case 1: 2m− 3n = 1. Letting m = 0, 1, 2 and trying to solve for n, the only solutions are
(2m, 3n) = (2, 1) and (4, 3). We want to show there is no solution when m ≥ 3. If m ≥ 3
then 2m is divisible by 8, so

3n = 2m − 1 ≡ −1 ≡ 7 mod 8.

This is impossible: since 32 ≡ 1 mod 8, we have 3even ≡ 1 mod 8 and 3odd ≡ 3 mod 8, so
the powers of 3 mod 8 do not include 7 mod 8. (This did not use anything about orders.
The next case will.)

Case 2: 3n − 2m = 1. Letting m = 0, 1, 2, 3 and trying to solve for n, the only solutions
are (2m, 3n) = (2, 3) and (8, 9). To show there are no solutions when m ≥ 4, write

3n = 1 + 2m ≡ 1 mod 16.

Check yourself that the order of 3 mod 16 is 4. Then 4 | n, say n = 4`, so

(4.1) 2m = 3n − 1 = 34` − 1 = 81` − 1.

However, 81` − 1 is divisible by 5 (indeed, 81 ≡ 1 mod 5 ⇒ 81` ≡ 1 mod 5), so (4.1) is
impossible because the right side is divisible by 5 and the left side is a power of 2. �

Fermat’s little theorem and its consequences (like the Fermat test) show the importance
of considering an−1 ≡ 1 mod n. Could we ever have an ≡ 1 mod n? Using a computer it’s
not hard to find 3n ≡ 1 mod n when n = 1, 2, 4, 8, 16, 20, 32, 40, . . ., 4n ≡ 1 mod n when
n = 1, 3, 9, 21, 27, 63, 81, 147, . . ., and 5n ≡ 1 mod n when n = 1, 2, 4, 6, 8, 12, 16, 18, . . ., but
the case a = 2 is different and this will be our second application of orders.

Theorem 4.2. There is no n > 1 for which 2n ≡ 1 mod n.
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Proof. Suppose 2n ≡ 1 mod n. Let p be the smallest prime factor of n, so p is the smallest
factor of n that’s greater than 1.

Let m be the order of 2 mod p. Since 2n ≡ 1 mod n =⇒ 2n ≡ 1 mod p we have m | n.
Also m | (p − 1), so m ≤ p − 1. The only factor of n less than p is 1, so m = 1. Thus the
condition 2m ≡ 1 mod n becomes 2 ≡ 1 mod n, so n = 1. �

The base 2 in this theorem is the only one that fits: for each a > 2 there are infinitely
many n > 1 for which an ≡ 1 mod n: use n = (a− 1)k for all k ≥ 1.

Our next application of orders, which is the original reason mathematicians became
interested in them, is their link to periodic decimal expansions. A decimal expansion is called
periodic if from some point onwards it has a repeating block of digits, and purely periodic
if the repeating block occurs right from the start. For example, 4/27 = .148148148 . . . is
purely periodic while 19/54 = .3518518518 . . . is periodic but not purely periodic. The
period length of a repeating decimal is the number of digits in its smallest repeating block,
so the decimal expansions of 4/27 and 19/54 have period length 3.1

Theorem 4.3. Every purely periodic decimal expansion is a rational number between 0 and
1 with denominator relatively prime to 10, and conversely all such rational numbers have
purely periodic decimal expansions. Moreover, if a/b is in reduced form between 0 and 1
with (10, b) = 1 then the period length of its decimal expansion is the order of 10 mod b. In
particular, the period length of a/b divides ϕ(b) and is independent of a.

Proof. We start by writing a purely periodic decimal as a fraction. If x = .c1c2. . .cd has a
periodic block of d terms then the digit c1 occurs in positions for 10−1, 10−(d+1), 10−(2d+1),
and so on, the digit c2 occurs in positions 10−2, 10−(d+2), 10−(2d+2), and so on, so

x = c1
∑
k≥0

1

10dk+1
+ c2

∑
k≥0

1

10dk+2
+ · · ·+ cd

∑
k≥0

1

10dk+d

=
( c1

10
+

c2
102

+ · · ·+ cd
10d

)∑
k≥0

1

10dk

=
( c1

10
+

c2
102

+ · · ·+ cd
10d

) 1

1− 1/10d
,

by the formula for the sum of a geometric series. Rewriting 1/(1− 1/10d) as 10d/(10d − 1)
and multiplying through the first factor in the numerator with the 10d, we get

x =
c110d−1 + c210d−2 + · · ·+ cd

10d − 1
.

This is a fraction between 0 and 1 with denominator relatively prime to 10.
Conversely, suppose a/b is rational between 0 and 1 with (10, b) = 1. If b = 10d − 1

for some d then we could run the calculations above in reverse to show a/b has a purely
periodic decimal expansion. Most denominators relatively prime to 10 are not 10d − 1,
but we can rewrite the fraction to have such a denominator using Euler’s theorem: since
10ϕ(b) ≡ 1 mod b, we have 10ϕ(b) − 1 = bc for some integer c, so

a

b
=

ac

bc
=

ac

10ϕ(b) − 1
.

1Logically speaking, 4/27 = .148148 . . . could be said to have a repeating block “148148” of length 6.
The period length is the minimal possible size of a repeating part.
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This fraction is between 0 and 1 with denominator 10ϕ(b)− 1, so calculations at the start of
the proof can be read in reverse to show the fraction has a purely periodic decimal expansion
with a repeating part of ϕ(b) digits. (If ac has fewer than ϕ(b) base 10 digits, append 0’s
to the front of it; see Examples 4.5 and 4.6.)

This repeating part may not be as small as possible. The smallest repeating part has d
digits where d is the smallest positive integer for which a/b can be written with denominator
10d − 1. Since a/b is in reduced form, its possible denominators are multiples of b, so its
decimal period length is the smallest d ≥ 1 for which 10d−1 is a multiple of b, or equivalently
10d ≡ 1 mod b. The least d is the order of 10 mod b, which divides ϕ(b) by Theorem 2.1. �

Example 4.4. The order of 10 mod 27 is 3: 101 ≡ 10 mod 27, 102 = 100 ≡ 19 mod 27,
103 = 190 ≡ 1 mod 27. Therefore every reduced fraction a/27 has a decimal period length
3. For example, to find the decimal of 20/27 we rewrite the fraction to have denominator
103 − 1:

20

27
=

20(103 − 1)/27

103 − 1
=

20(37)

103 − 1
=

740

103 − 1
.

Since the numerator is 740, the proof of Theorem 4.3 tells us 20/27 = .740.

Example 4.5. The order of 10 mod 57 is 18, so 1/57 has decimal period length 18. Ex-
plicitly,

1

57
=

(1018 − 1)/57

1018 − 1
=

17 digits︷ ︸︸ ︷
17543859649122807

1018 − 1
= .017543859649122807.

The initial 0 occurs since the decimal period length is 18 but (1018 − 1)/57 has 17 digits.

Example 4.6. The order of 10 mod 239 is 7, so 2/239 has decimal period length 7. Ex-
plicitly,

2

239
=

2(107 − 1)/239

107 − 1
=

83682

107 − 1
= .0083682.

Two initial 0’s occur since the decimal period length is 7 while 2(107 − 1)/239 has 5 digits.

Remark 4.7. Fractions a/b and a′/b with the same denominator are guaranteed to have
the same decimal period length when they are both in reduced form2 but reduced and
non-reduced fractions with the same denominator could have different decimal periods:
1/21 = .047619 has decimal period 6 while 7/21 = 1/3 = .3 does not.

If (10, b) = 1 then the decimal period length of 1/b divides ϕ(b). Since ϕ(b) = b− 1 if b is
prime and ϕ(b) < b− 1 if b is composite, the decimal period length of 1/b can be b− 1 only
for prime b (other than 2 and 5), and this happens if and only if 10 mod b generates the
units mod b. When b < 100, this occurs for b = 7, 17, 19, 23, 29, 47, 59, 61, 97. For example,

1

7
= .142857︸ ︷︷ ︸

6 digits

,
1

17
= .0588235294117647︸ ︷︷ ︸

16 digits

,
1

19
= .052631578947368421︸ ︷︷ ︸

18 digits

.

It is believed that 10 mod p has order p − 1 for infinitely many primes p, or equivalently
1/p has decimal period length p − 1 for infinitely many primes p. This is a special case of
Artin’s primitive root conjecture, which will be described at the end of Section 6.

2More generally, the decimal period lengths are equal when (a, b) = (a′, b).
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Everything we have done with decimal expansions in base 10 can be carried over with no
essential changes to others bases, provided the fraction has a denominator relatively prime
to the base. For example, using base 2, a reduced fraction a/b with odd denominator has
binary period length equal to the order of 2 mod b.

Example 4.8. The order of 10 mod 11 is 2 while the order of 2 mod 11 is 10, so 1/11 has
decimal period length 2 and binary period length 10:

1

11
=

(102 − 1)/11

102 − 1
=

9

102 − 1
= .09

and

1

11
=

(210 − 1)/11

210 − 1
=

93

210 − 1
=

7 digits︷ ︸︸ ︷
10111012
210 − 1

= .0001011101.

5. Order of products

How is the order of a product a1a2 mod m related to the orders of the factors a1 mod m
and a2 mod m? In this generality not much can be said!

Example 5.1. Suppose a mod m has order 5. Then a4 mod m, the inverse of a mod m,
has order 5 and a2 mod m also has order 5, but the product aa4 ≡ 1 mod m has order 1
while the product aa2 = a3 mod m has order 5.

When the orders of a1 mod m and a2 mod m are relatively prime, we can say exactly
what the order of a1a2 mod m is:

Theorem 5.2. Let a1 mod m and a2 mod m have respective orders n1 and n2. If (n1, n2) =
1 then a1a2 mod m has order n1n2.

In words, for units with relatively prime orders, the order of their product is the product
of their orders.

Proof. Since

(a1a2)
n1n2 = an1n2

1 an1n2
2 = (an1

1 )n2(an2
2 )n1 ≡ 1 · 1 ≡ 1 mod m,

we see a1a2 mod m has order dividing n1n2 by Theorem 2.1.
Let n be the order of a1a2 mod m. In particular, (a1a2)

n ≡ 1 mod m. From this we will
show n1 | n and n2 | n. Since

(5.1) an1a
n
2 ≡ 1 · 1 ≡ 1 mod m,

raising both sides of (5.1) to the power n2 (to kill off the a2 factor) gives us

ann2
1 ≡ 1 mod m.

Therefore n1 | nn2 by Theorem 2.1. Since (n1, n2) = 1, we conclude n1 | n. Now raising
both sides of (5.1) to the power n1 gives ann1

2 ≡ 1 mod m, so n2 | nn1 by Theorem 2.1, and
thus n2 | n.

Since n1 | n, n2 | n, and (n1, n2) = 1, we conclude that n1n2 | n. Since we already showed
n | n1n2 (in the first paragraph of the proof), we conclude n = n1n2. �

Example 5.3. Mod 21, −1 has order 2 and 4 has order 3. Therefore −4 = 17 has order 6.

Example 5.4. If a1 mod m has order 5 and a2 mod m has order 8, then a1a2 mod m has
order 40.
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Corollary 5.5. If a1, . . . , ar mod m are units with orders n1, . . . , nr and the ni are pairwise
relatively prime, then the product a1 · · · ar mod m has order n1 · · ·nr.

Proof. Induct on r, with Theorem 5.2 being the case r = 2. Details are left to the reader. �

Remark 5.6. While Theorem 5.2 shows that a product of units with relatively prime orders
has a predictable order, what can be said if we start with a mod m of order n and write
n = n1n2 where (n1, n2) = 1: is a mod m a product of units with orders n1 and n2? The
answer is yes, and those units are unique.

Suppose a ≡ a1a2 mod m where a1 mod m has order n1 and a2 mod m has order n2.
Therefore an1 ≡ an1

2 mod m and an2 ≡ an2
1 mod m. To remove the exponents on a2 and a1

we want to raise to an additional power that is an inverse of the exponent modulo the order
of a2 or a1. In powers of a1 the exponent only matters modulo n1, and in powers of a2 the
exponent only matters modulo n2. Since (n1, n2) = 1, n1x + n2y = 1 for some x, y ∈ Z, so
n1x ≡ 1 mod n2 and n2y ≡ 1 mod n1. Thus

an1 ≡ an1
2 mod m =⇒ an1x ≡ an1x

2 ≡ a2 mod m,

an2 ≡ an2
1 mod m =⇒ an2y ≡ an2y

1 ≡ a1 mod m,

so we solved for a1 mod m and a2 mod m as particular powers of a mod m. Conversely,

a = a1 = an1x+n2y = (an2y)(an1x) where an
2y mod m has order n1 while an1x mod m has

order n2.

Dropping the assumption that n1 and n2 are relatively prime, a1a2 mod m has order
dividing n1n2 since (a1a2)

n1n2 = an1n2
1 an1n2

2 ≡ 1 · 1 ≡ 1 mod m. More precisely, the order

of a1a2 mod m divides the least common multiple [n1, n2]: (a1a2)
[n1,n2] = a

[n1,n2]
1 a

[n1,n2]
2 ≡

1 · 1 ≡ 1 mod m. For example, if a1 mod m has order 6 and a2 mod m has order 4, then
a1a2 mod m has order dividing 12, not just 24.

The least common multiple is not just an upper bound on the order of a product of two
units, but can be realized as the order of some product of their powers:

Corollary 5.7. Let a1 mod m and a2 mod m be two units with respective orders n1 and
n2. For some positive integers k1 and k2, a

k1
1 ak22 has order [n1, n2].

Proof. The basic idea is to write [n1, n2] as a product of two relatively prime factors and

then find exponents k1 and k2 such that ak11 mod m and ak22 mod m have orders equal to

those factors. Then the order of ak11 mod m and ak22 mod m will be equal to the product of
the factors (Theorem 5.2), which is [n1, n2] by design.

Here are the details. Factor n1 and n2 into primes:

n1 = pe11 · · · p
er
r , n2 = pf11 · · · p

fr
r .

We use the same list of (distinct) primes in these factorizations, and use an exponent 0 on
a prime that is not a factor of one of the integers. The least common multiple is

[n1, n2] = p
max(e1,f1)
1 · · · pmax(er,fr)

r .

Break this into a product of two factors, one being a product of the prime powers where
ei ≥ fi and the other using prime powers where ei < fi. Call these two numbers `1 and `2:

`1 =
∏
ei≥fi

peii , `2 =
∏
ei<fi

pfii .
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Then [n1, n2] = `1`2 and (`1, `2) = 1 (since `1 and `2 have no common prime factors).

By construction, `1 | n1 and `2 | n2. Then a
n1/`1
1 mod m has order `1 and a

n2/`2
2 mod m

has order `2. Since these orders are relatively prime and the two powers of a1 mod m and

a2 mod m commute with each other, a
n1/`1
1 a

n2/`2
2 mod m has order `1`2 = [n1, n2]. �

Example 5.8. Suppose a1 mod m has order n1 = 60 = 22 · 3 · 5 and a2 mod m has order
n2 = 630 = 2 · 32 · 5 · 7. Then [n1, n2] = 22 · 32 · 5 · 7. We can write this as (22 · 5) · (32 · 7),
where the first factor appears in n1, the second in n2, and the factors are relatively prime.
Then a31 mod m has order 22 · 5 and a102 mod m has order 32 · 7 (why?). These orders are
relatively prime, so a31a

10
2 mod m has order 22 · 5 · 32 · 7 = [n1, n2].

Since the same power of 5 appears in both n1 and n2, there is another factorization of
[n1, n2] we can use: placing the 5 in the second factor, we have [n1, n2] = (22)(32 · 5 · 7).
Then a151 mod m has order 22 and a22 mod m has order 32 · 5 · 7 (why?). These orders are
relatively prime, so a151 a22 mod m has order 22 · 32 · 5 · 7 = [n1, n2].

6. Units modulo a prime

For some moduli m, there is a unit whose order is ϕ(m): its powers fill up all the units.

Example 6.1. The order of 3 mod 7 is 6 = ϕ(7) and every unit mod 7 is a power of 3. We
can see this in the row of powers of 3 mod 7 in the table in Example 1.1.

Example 6.2. The order of 2 mod 9 is 6 = ϕ(9): the powers of 2 mod 9 are 2, 4, 8, 7, 5,
1, which are all the units mod 9.

A unit mod m whose order is ϕ(m) is called a generator or primitive root mod m. For
instance, Examples 6.1 and 6.2 tell us that 3 is a generator mod 7 and 2 is a generator mod
9. Example 1.2 shows there is no generator for modulus 15 since there are 8 units modulo
15 and their orders are 1, 2, or 4.

In a 1769 paper on decimal expansions, Lambert [5] conjectured that the units modulo
a prime always have a generator. A proof was given by Euler in 1774 [2, Art. 37, 38],
Legendre in 1785 [6, pp. 471–473], and Gauss in 1801 [3, Art. 52–55]. Gauss went farther
than anyone else by classifying all m ≥ 2 such that the units mod m have a generator:
2, 4, pk, and 2pk for odd primes p. We will focus just on the case of a prime modulus.

Theorem 6.3. When p is a prime, there is a unit mod p with order p− 1.

A common feature of all proofs of this theorem is that they are not constructive. There
is no algorithm known for finding a generator of (Z/(p))× that is substantially faster than
a brute force search: try a = 2, 3, . . . until you find an element with order p − 1. What
makes Theorem 6.3 important, despite its nonconstructive nature, is that it guarantees a
brute force search will eventually succeed.3

Theorem 6.3 is important not only in pure mathematics, but also in cryptography. A
choice of generator for (Z/(p))× is one of the ingredients in two public key cryptosystems:
Diffie-Hellman (this is the original public key system, if we discount earlier classified work
by British intelligence) and ElGamal. You can look up these cryptosystems online.

We are now ready to prove Theorem 6.3.

3The Generalized Riemann Hypothesis implies a brute force search runs in polynomial time in log p.
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Proof. Step 1: We have the following equality in (Z/(p))[T ]:

T p−1 − 1 = (T − 1)(T − 2) · · · (T − (p− 1)).

Fermat’s little theorem tells us T p−1 − 1 has roots 1, 2, . . . , p − 1 mod p. Therefore in
(Z/(p))[T ], T p−1 − 1 is divisible by T − 1, T − 2, . . . , T − (p− 1). These linear factors are
pairwise relatively prime, so in (Z/(p))[T ]

T p−1 − 1 = (T − 1)(T − 2) · · · (T − (p− 1))h(T )

for some polynomial h(T ). Computing the degrees of both sides shows deg h = 0, so h(T )
is a nonzero constant. Then looking at leading coefficients on both sides shows h(T ) = 1,
and we’re done.

Step 2: If d and n are positive integers with d | n then (T d − 1) | (Tn − 1).

Let n = dd′. Then Tn − 1 = T dd′ − 1 = (T d)d
′ − 1.

The polynomial T d′ − 1 has 1 as a root, so it is divisible by T − 1:

T d′ − 1 = (T − 1)g(T ).

(Explicitly, g(T ) = T d′−1 + T d′−2 + · · ·+ T + 1.) Substituting T d for T in this polynomial
equation, we get

Tn − 1 = (T d − 1)g(T d),

showing T d − 1 is a factor of Tn − 1.

Step 3: For each prime power qe that divides p− 1, there is a unit mod p with order qe.
That a unit a mod p has order qe is is the same as saying

aq
e ≡ 1 mod p, aq

e−1 6≡ 1 mod p.

This means a mod p is a root of T qe − 1 and is not a root of T qe−1 − 1. And that is what

we will do: show T qe − 1 has a root in Z/(p) that is not a root of T qe−1 − 1.
From Step 2, with d = qe and n = p − 1, T p−1 − 1 is divisible by T qe − 1. Since

T p−1 − 1 in (Z/(p))[T ] is a product of T − 1, T − 2, . . . , T − (p − 1) by Step 1, any monic
factor of T p−1 − 1 in (Z/(p))[T ] must be a product of some of these linear factors (unique
factorization!). Therefore T qe − 1 has qe distinct roots in Z/(p), and by similar reasoning

T qe−1 − 1 has qe−1 distinct roots in Z/(p). As qe > qe−1, there must be an integer mod p

that is a root of T qe − 1 and not a root of T qe−1 − 1.

Step 4: There is an integer mod p that has order p− 1.
Write p− 1 as a product of primes:

p− 1 = qe11 qe22 · · · q
er
r .

By Step 3, there is a unit ai mod p with order qeii . Then Corollary 5.5 tells us a1 · · · ar mod p
has order qe11 qe22 · · · qerr = p− 1. �

Is each integer a other than 0, 1,−1 a generator modulo p for infinitely many primes p?
Not if a is a perfect square: for odd primes p, if a = b2 in Z then a(p−1)/2 = bp−1 ≡ 1 mod p,
so a mod p has order at most (p − 1)/2. Emil Artin conjectured in 1927 that for all other
integers a (not 0, ±1, or perfect squares) the answer is yes. This is called Artin’s primitive
root conjecture, and Hooley [4] showed in 1967 that this conjecture is a consequence of the
Generalized Riemann Hypothesis.
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