
Worksheet solutions

1. [easier] The “particle in a well” system is defined to have the potential energy function

V (x) =

{
0 0 ≤ x ≤ L

+∞ else

where L > 0. Graph the function V (x) and find what potential energies the particle
would have at x = L

2
, L, L+ 1.

Solution: The graph of V (x) looks something like this...

Evaluating V (x) at x = L
2
, L, L+ 1, we find

V (L/2) = 0, V (L) = 0, V (L+ 1) = ∞

2. [easier] If a particle is in the “particle in a well” system (with V0 = 0), and is in the
first energy state, then the particle has the energy

E1 =
π2h̄2

2mL2

Suppose out particle is an electron with mass me = 9.1×10−31 kg in a well with length
L = 10−9m and h̄ = 1.05× 10−34m2kg/s. Using a calculator, find E1 for our electron.

Solution: Plugging in all the values into the formula, we get

E1 =
π2h̄2

2mL2
=

π2(1.05× 10−34m2kg/s)2

2(9.1× 10−31 kg)(10−9m)2
= 5.98× 10−20 kgm2/s2

3. [easier – medium] Consider the “particle in a well” system at the three lowest energy
levels: n = 1, 2, 3. Sketch the function p(x) (defined in Eq. 1) for each of these values
of n.
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Solution: For the particle in the well, the wavefunction was found to be

ψn(x) =

{√
2
L
sin

(
nπ
L
x
)

0 ≤ x ≤ L

0 else

Therefore the probability density function for each of these wavefunctions, pn(x), is

pn(x) = |ψn(x)|2 =

{
2
L
sin2

(
nπ
L
x
)

0 ≤ x ≤ L

0 else

Plugging in values for n = 1, 2, 3, we get the following plots (taking L = 1 as an
example). Note that each graph has n nodes, all graphs have p(x) = 0 for x ≤ 0 and
x ≥ L.

4. Consider the “particle in a well” system.

(a) [medium – has integration] Suppose our particle is measured to be in the first
energy level, n = 1. What is the probability that our particle is in the “left” half
of the well given by [0, L/2]. Explain why this probability makes sense.

Solution: If the particle is measured in the first energy level, n = 1, this corresponds to the
wavefunction

ψ1(x) =

√
2

L
sin

(π
L
x
)

and the probability density function

p1(x) =
2

L
sin2

(π
L
x
)

The probability that the particle is in the left half of the is found by integrating
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this probability density function over the range [0, L/2] :

P

(
0 ≤ x ≤ L

2

)
=

∫ L/2

0

p1(x) dx

=

∫ L/2

0

2

L
sin2

(π
L
x
)
dx

=

∫ L/2

0

2

L

[
1

2
− 1

2
cos

(
2π

L
x

)]
dx

=

[
x

L
− 1

2π
sin

(
2π

L
x

)]∣∣∣∣L/2
0

=
1

2

So the probability that the particle is in the left half of the well is 50%.

(b) [medium] For the particle in part (b), what is the probability it is in the right half
of the well [L/2, L]? Explain why the probabilities from part (a) and (b) make
sense.

Solution: Since the probability the particle is outside the well is 0% (p(x) = 0 for x ≤ 0 and
x ≥ 0), the particle also has a 50% probability of being in the right half of the
well. It’s reasonable that the particle has an equal chance of being in the first and
second halves of the well since there is nothing physically distinct about either of
the sides - the probability of the particle existing at any point inside the well is
symmetric about the middle of the well (see the n = 1 case in 1(a)).

(c) [tricky – integration] Suppose there are now two particles in the well incapable of
interaction, one in the n = 1 energy level, and the other in the n = 3 energy level.
(It’s important they are incapable of interaction so they can’t change energy levels
after observation). What is the probability that the particles will both be in the
region [L/4, L/2] simultaneously?

Solution: Label the n = 1 particle as particle 1 and the n = 3 particle as particle 2.
The wavefunctions, and their corresponding probability density functions, for the
n = 1 and n = 3 case were found in the previous parts:

ψ1(x) =

√
2

L
sin

(π
L
x
)
, ψ3(x) =

√
2

L
sin

(
3π

L
x

)

p1(x) =
2

L
sin2

(π
L
x
)
, p3(x) =

2

L
sin2

(
3π

L
x

)
The probability that particle 1 and particle 2 will be in the region [L/4, L/2]
simultaneously is the product of the probabilities of the two being in the region
individually, i.e.

P

(
L

4
≤ x1, x2 ≤

L

2

)
= P

(
L

4
≤ x1 ≤

L

2

)
· P

(
L

4
≤ x2 ≤

L

2

)
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This is because we assume the particles are noninteracting, and therefore these
two probabilities are independent. Now we just need to calculate these two prob-
abilities by integrating the appropriate probability density functions:

P

(
L

4
≤ x1 ≤

L

2

)
=

∫ L/2

L/4

p1(x) dx

=

∫ L/2

L/4

2

L
sin2

(π
L
x
)
dx

=

[
x

L
− 1

2π
sin

(
2π

L
x

)]∣∣∣∣L/2
L/4

=
1

4
+

1

2π
=

2 + π

4π

P

(
L

4
≤ x2 ≤

L

2

)
=

∫ L/2

L/4

p3(x) dx

=

∫ L/2

L/4

2

L
sin2

(
3π

L
x

)
dx

=

∫ L/2

0

2

L

[
1

2
− 1

2
cos

(
6π

L
x

)]
dx

=

[
x

L
− 1

6π
sin

(
2π

L
x

)]∣∣∣∣L/2
L/4

=
1

4
+

1

6π
=

2 + 3π

12π

And so the probability both particles will be in the window is

P

(
L

4
≤ x1, x2 ≤

L

2

)
=

(
2 + π

4π

)(
2 + 3π

12π

)
=

(2 + π)(2 + 3π)

48π

5. [medium - can be done without knowing much about differential equations] A central
idea of quantum mechanics stems from the mathematical fact that scalar multiples of a
solution to the Schrodinger equation gives other solutions. If we have a wavefunctions
ψ(x) which is a solution to the Schrodinger Equation - Eqn. 3, then the wavefunction

Ψ(x) = αψ(x)

is also a solution for all real constants α. Show, by plugging into Eqn. 3, that if ψ(x)
satisfies the Schrodinger equation then Ψ(x) also satisfies the Schrodinger equation as
claimed above.

Solution: Suppose ψ(x) is a wavefunction that satisfies the Schrodinger equation and α is a real
constant. Since ψ(x) satisfies the Schrodinger equation, we have(

− h̄2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x)
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Where E is some real constants. Plugging, Ψ into the RHS Schrodinger eqn. 3 and
simplifying, we get(

− h̄2

2m

d2

dx2
+ V (x)

)
Ψ(x) =

(
− h̄2

2m

d2

dx2
+ V (x)

)
αψ(x)

= α

(
− h̄2

2m

d2

dx2
+ V (x)

)
ψ(x)︸ ︷︷ ︸

Eψ(x)

= Eαψ(x)

= EΨ(x)

So since there exists an E such that(
− h̄2

2m

d2

dx2
+ V (x)

)
Ψ(x) = EΨ(x)

namely, the same E which satifies the ψ(x) Schrodinger equation, the wavefunction
Ψ(x) is a solution to the Schrodinger equation also.
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