Berkeley Math Circle September 2022

MODULAR ARITHMATIC

Important Common Characteristics

"Addition" in Our Integer Number System

$$\mathbf{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$$

Important Items:

(1) Closed Within the System:

Integer + Integer = Integer

(2) Identity e: e+a=a+e=a

(3) Inverse -a: a + (-a) = (-a) + a = e

Categorize this system into Groups of Special Characteristics

Even Numbers:

$$\{\ldots, -4, -2, 0, 2, 4, 6, \ldots\}$$

- (1) Even + Even = Even ?
- (2) Identity?
- (3) Additive Inverses?

Odd Numbers:

$$\{\ldots, -3, -1, 1, 3, 5, 7, \ldots\}$$

- (1) Odd + Odd = Odd?
- (2) Identity?
- (3) Additive Inverses?

Positive Numbers:

 $\{1, 2, 3, 4, 5, \ldots\}$

- (1) Positive + Positive = Positive ?
- (2) Identity?
- (3) Additive Inverses?

Positive Numbers + Zero:

 $\{0, 1, 2, 3, 4, 5, \ldots\}$

- (1) Positive + Positive = Positive ?
- (2) Identity?
- (3) Additive Inverses?

Negative Numbers + Zero:

$$\{\ldots, -5, -4, -3, -2, -1, 0\}$$

- (1) Negative + Negative = Negative?
- (2) Identity?
- (3) Additive Inverses?

Multiples of 3:

$$\{\ldots, -6, -3, 0, 3, 6, 9, \ldots\}$$

- (1) Multiple of 3 + Multiple of 3 = Multiple of 3?
- (2) Identity?
- (3) Additive Inverses?

Multiples of 10 or 23:

```
\{..., -100, -10, 0, 10, 100, 1000, ...\}
\{..., -46, -23, 0, 23, 46, 69, ...\}
```

- (1) Multiples of 10 or 23
 - + Multiples of 10 or 23
 - = Multiples of 10 ot 23?
- (2) Identity?
- (3) Additive Inverses?

DIVIDE AND CONQUER

Modular Arithmetic – Addition in a Finite Number System

- 1. Must be closed
- 2. Must have identity ("zero")
- 3. Must have additive inverse

Even =
$$\{..., -4, -2, 0, 2, 4, 6, ...\} \approx 0$$

Odd = $\{..., -3, -1, 1, 3, 5, 7, ...\} \approx 1$

+	Even	Odd
Even	Even	Odd
Odd	Odd	Even

Can view Even Numbers as <u>multiples of 2</u> or <u>divisible by 2</u> or <u>remainder equals to 0 when divided by 2</u>.

Can view Odd Numbers as the <u>remainder of 1 when it is</u> <u>divided by 2.</u>

Can view modular arithmetic as arithmetic of the remainders. We only keep track of the remainders.

Can write
$$7 \equiv 1 \pmod{2}$$
, $6 \equiv 0 \pmod{2}$
 $121 \equiv 1 \pmod{2}$, $284 \equiv 0 \pmod{2}$

More Examples:

```
13 \equiv 1 \pmod{3}
26 \equiv 2 \pmod{3}
83 \equiv 2 \pmod{3}
83 \equiv \pmod{4}
83 \equiv \pmod{5}
83 \equiv \pmod{6}
83 \equiv \pmod{9}
25675 \equiv \pmod{5}
25675 \equiv
            \pmod{7}
23548901237 \equiv \pmod{2}
```

More Examples:

```
13 \equiv 1 \pmod{3}
26 \equiv 2 \pmod{3}
83 \equiv 2 \pmod{3}
83 \equiv 3 \pmod{4}
83 \equiv 3 \pmod{5}
83 \equiv 5 \pmod{6}
83 \equiv 2 \pmod{9}
25675 \equiv \mathbf{0} \pmod{5}
25675 \equiv \mathbf{6} \pmod{7}
23548901237 \equiv 1 \pmod{2}
```

More Examples:

(mod 5) 0, 1, 2, 3, and 4 are the only remainders when an integer is divided by 5.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$$3+4=7 \equiv 2 \pmod{5}$$
 $4+4=8 \equiv 3 \pmod{5}$
 $23+49=72 \equiv 2 \pmod{5}$ $84+29=113 \equiv 3 \pmod{5}$
 $2+4=6 \equiv 1 \pmod{5}$ $4+2=6 \equiv 1 \pmod{5}$

- 1. 0 is the identity of (mod 5)
- 2. 2 and 3 are additive inverses of each other since $2+3 \equiv 0 \pmod{5}$ 2 and 3 are 5-complements.
- 3. 4 and 1 are additive inverses of each other since $4+1 \equiv 0 \pmod{5}$ 4 and 1 are 5-complements
- $4. -1 \equiv 4 \pmod{5}$
- 5. $-2 \equiv 3 \pmod{5}$
- 6. $-3 \equiv 2 \pmod{5}$
- 7. $-4 \equiv 1 \pmod{5}$
- 8. $5 \equiv 0 \pmod{5}$
- 9. $-72 \equiv -2 \equiv 3 \pmod{5}$
- $10. -125 \equiv 0 \pmod{5}$
- 11. $-139 \equiv -4 \equiv 1 \pmod{5}$

Solving equations in (mod 5)

1.
$$x + 3 = 12$$
 $x = 12 + (-3) = 9 \equiv 4 \pmod{5}$
Check: Left Side: $x+3 = 4+3 = 7 \equiv 2 \pmod{5}$

Right Side: $12 \equiv 2 \pmod{5}$

Any number $\equiv 4 \pmod{5}$ works. 124 is a solution.

$$124 + 3 = 127 \equiv 2 \pmod{5}$$
 $12 \equiv 2 \pmod{5}$

2.
$$8x + 3 = 12 - 6x$$
 $14x = 9$ $4x \equiv 4 \pmod{5}$ $x \equiv 1 \pmod{5}$

Check: Left Side:
$$8x+3 = 8+3 = 11 \equiv 1 \pmod{5}$$

Right Side:
$$12-6x = 12-6 = 6 \equiv 1 \pmod{5}$$

Any number $\equiv 1 \pmod{5}$ works. 206 is a solution.

$$8(206) + 3 = 1651 \equiv 1 \pmod{5}$$

$$12-6(206) = -1224 \equiv 1221 \pmod{5} \equiv 1 \pmod{5}$$

Applications:

Time Clock

```
0 to 23 (24 hours) 18 + 23 = 41 \equiv 17 \pmod{24}
0 to 12 (12 hours) with am/pm 6 \text{ pm} + 23 \text{ hours} = 5 \text{ pm}
15:25 \text{ vs} \quad 3:25 \text{ pm} 18 + 11 \text{ pm} \equiv 29 \pmod{12}
\equiv 5 \text{ pm}
```

Months

```
January to December (1 to 12)
233 months from now (September)
233 \equiv 5 \pmod{12} 9 + 5 = 14 \equiv 2 \pmod{12} February
```

Solving Equations:

$$9x-7=5$$
 $9x = 12$ $x = 12/9 = 4/3$ (not integer)

$$9x-7 = 5 \pmod{12}$$
 $9x = 12 \equiv 0 \pmod{12}$ $x = 0 \pmod{12}$

<u>Check</u>: $9(0) - 7 = -7 \equiv 5 \pmod{12}$

Any multiple of 12 works. x = 36. $9(36) -7 = 317 \equiv 5 \pmod{12}$

Consider modular multiplication (mod 5)

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	6	8
3	0	3	6	9	12
4	0	4	8	12	16

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Many of the multiplication properties still hold for modular arithmetic

Identity: 1

Commutative: $a \times b = b \times a$

Associative: $a \times (b \times c) = (a \times b) \times c$

Distributive: $a \times (b+c) = a \times b + a \times c$

Multiplicative Inverses: 1/1 = 1

$$1/2 = 3 \ (3 \times 2 \equiv 1 \ (\text{mod } 5))$$

$$1/3 = 2 \ (2 \times 3 \equiv 1 \ (\text{mod } 5))$$

$$1/4 = 4 \ (4 \times 4 \equiv 1 \ (\text{mod } 5))$$

Problem with Multiplication (Mod 6).

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

What are the problems?

- 1. Besides zero, 2, 3, and 4 have no inverses.
- 2. $2x \equiv 1 \pmod{6}$ has no solution.
- 3. $3x \equiv 1 \pmod{6}$ has no solution.
- 4. $4x \equiv 1 \pmod{6}$ has no solution.
- 5. $5x \equiv 1 \pmod{6}$ has solution x = 5.

What about $2x \equiv 1 \pmod{3}$, $2x \equiv 1 \pmod{4}$, $2x \equiv 1 \pmod{5}$, $2x \equiv 1 \pmod{7}$?

What about $3x \equiv 1 \pmod{2}$, $3x \equiv 1 \pmod{3}$, $3x \equiv 1 \pmod{4}$, $3x \equiv 1 \pmod{5}$?

What about $6x \equiv 1 \pmod{15}$ or $6x \equiv 1 \pmod{17}$?

$$2x \equiv 1 \pmod{3}$$
 $x = 2$
 $2x \equiv 1 \pmod{4}$ No answer
 $2x \equiv 1 \pmod{5}$ $x = 3$
 $2x \equiv 1 \pmod{7}$ $x = 4$
 $3x \equiv 1 \pmod{2}$ $x = 4$
 $3x \equiv 1 \pmod{3}$ No answer
 $3x \equiv 1 \pmod{4}$ $x = 3$
 $3x \equiv 1 \pmod{5}$ $x = 2$
 $3x \equiv 1 \pmod{5}$ $x = 2$
 $3x \equiv 1 \pmod{5}$ $x = 5$
 $3x \equiv 1 \pmod{7}$ $x = 5$
 $3x \equiv 1 \pmod{8}$ $x = 3$

 $3x \equiv 1 \pmod{9}$ No answer

What about $6x \equiv 1 \pmod{15}$ or $6x \equiv 1 \pmod{17}$?

No inverse, No answer Inverse of 6 is 3, x = 3.

Cancellation Property of Addition

$$14 \equiv 2 \pmod{12}$$

 $14+2 = 16 \equiv 4 \pmod{12}$
 $2+2 \equiv 4 \pmod{12}$

Cancellation Property of Multiplication

$$14 \equiv 2 \pmod{12}$$

 $14 \times 2 = 28 \equiv 4 \pmod{12}$
 $2 \times 2 = 4 \equiv 4 \pmod{12}$

Cancellation Property of Subtraction

$$14 \equiv 2 \pmod{12}$$

 $14-2 = 12 \equiv 0 \pmod{12}$
 $2-2 \equiv 0 \pmod{12}$

Cancellation Property of Division

$$14 \equiv 2 \pmod{12}$$

 $14 \div 2 = 7 \equiv 7 \pmod{12}$
 $2 \div 2 = 1 \equiv 1 \pmod{12}$

Cancellation Property of Multiplication

$$a \equiv b \pmod{m}$$

 $a-b \equiv 0 \pmod{m}$
 $a-b = mk$
 $n \times (a-b) = n \times (mk) = m(nk) \equiv 0 \pmod{m}$
 $na \equiv nb \pmod{m}$

Cancellation Property of Division

$$ac \equiv bc \pmod{m}$$

 $ac-bc \equiv 0 \pmod{m}$
 $ac-bc = mk$
 $c \times (a-b) = mk = nc$ where n may or may
 not be a factor of m
 $a-b \equiv n \pmod{m}$
but may not be $\equiv 0 \pmod{m}$
so a may not be $\equiv b \pmod{m}$

Cancellation Property of Division

$$14 \equiv 2 \pmod{12}$$

 $14 \div 2 = 7 \equiv 7 \pmod{12}$
 $2 \div 2 = 1 \equiv 1 \pmod{12}$

But

$$14 \div 2 = 7 \equiv 1 \pmod{12 \div 2} \equiv 1 \pmod{6}$$

So,
$$ac \equiv bc \pmod{m}$$
 implies $a \equiv b \pmod{k}$

where k = m/d with d = GCD(m, c)

Problems

- 1) $2x \equiv 1 \pmod{3}$
- 2) $8x \equiv 4 \pmod{12}$
- 3) $6x \equiv 9 \pmod{15}$
- 4) $6x \equiv 2 \pmod{7}$
- 5) $8x \equiv 2 \pmod{12}$
- 6) $8x \equiv 5 \pmod{12}$

 $ax \equiv c \pmod{m}$ has solution only if the GCD (a, m) is a factor of c.

Suppose (a, m) = d and d is a factor of c (a/d=p, m/d=q, c/d=n). Then the original equation is equivalent to $px \equiv n \pmod{q}$. Can think of separating numbers $0, 1, 2, ..., q-1 \pmod{q}$ into q piles. The pile that is $\equiv n \pmod{q}$ contains all the solutions.