Berkeley Math Circle September 2022

Review of Modular Arithmetic

$1.12 \equiv 2 \pmod{5}$
$12 \equiv 0 \pmod{6}$
$23 \equiv 2 \pmod{5}$
$-3 \equiv 4 \pmod{7}$
$89 \equiv 4 \pmod{5}$
$-89 \equiv 1 \pmod{5}$
3. $x - 3 \equiv 1 \pmod{5} \rightarrow x \equiv 4 \pmod{5}$
4. $x + 2 \equiv 4 \pmod{5} \rightarrow x \equiv 2 \pmod{5}$
5. $2x \equiv 3 \pmod{5} \rightarrow 4x \equiv 6 \equiv 1 \pmod{5}$
6. $2x \equiv 8 \pmod{5} \rightarrow x \equiv 4 \pmod{5}$
$3x \equiv 2 \pmod{5} \rightarrow 2(3x) \equiv 6x \equiv x \pmod{5}$
$2(2) \equiv 4 \pmod{5}$ So, $x \equiv 4 \pmod{5}$
7. $2x \equiv 4 \pmod{5} \rightarrow x \equiv 2 \pmod{5}$
8. $3x \equiv 3 \pmod{6} \Rightarrow x \operatorname{NOT} \equiv 1 \pmod{6}$
Check: $x = 3$ works since $9 \equiv 3 \pmod{6}$
but $3 \text{ NOT} \equiv 1 \pmod{6}$
However, $3x/3 = x \equiv 3/3 \equiv 1 \pmod{6/3} \equiv 1 \pmod{2}$
$3 \equiv 3 \pmod{6} 5 \times 3 = 15 \equiv 3 \pmod{6}$
$7 \times 3 = 21 \equiv 3 \pmod{6}$

Solving Equations

1) $2x \equiv 1 \pmod{3}$ Since (2, 3) = 1, there is only one solution among 0, 1, 2 which is x = 2. And then any x=2+(3k), where k = integers, would satisfy this equation. They are: $\{\dots, -4, -1, 2, 5, 8, 11, \dots\}$. $2(2x) = 4x \equiv 2(1) \pmod{3} \rightarrow x \equiv 2 \pmod{3}$.

2) $8x \equiv 4 \pmod{12}$

This implies $2x \equiv 1 \pmod{3}$ since (8, 12) = 4 and the answers are: $\{\dots, -4, -1, 2, 5, 8, 11, \dots\}$. $2(2x) = 4x \equiv 2(1) \pmod{3} \equiv 2 \pmod{3} \rightarrow x \equiv 2 \pmod{3}$.

3) $6x \equiv 9 \pmod{15}$

This implies $2x = 3 \pmod{5}$ since (6, 15) = 3. Simple check to see that, among 0, 1, 2, 3, and 4, x = 4 works. So, x = 4+5k satisfy the equation. They are: $\{-6, -1, 4, 9, 14, ...\}$ $3(2x) = 6x \equiv 3(3) \pmod{5} \equiv 9 \pmod{5} \rightarrow x \equiv 4 \pmod{5}$.

4) $6x \equiv 2 \pmod{7}$

Since (6, 7) = 1, there is only one solution among 0, 1, 2, 3, 4, 5, and 6 which is x = 5. So, x = 5+7k satisfy the equation. They are: $\{..., -9, -2, 5, 12, 19, ...\}$ $6(6x) = 36x \equiv 6(2) \pmod{7} \equiv 12 \pmod{7} \Rightarrow x \equiv 5 \pmod{7}$. Solving Equations

5) $8x \equiv 2 \pmod{12}$

This implies $4x \equiv 1 \pmod{6}$. However, none of 0, 1, 2, 3, 4, 5 works. No solution.

6) $8x \equiv 5 \pmod{12}$

None of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 works.

No solution.

 $ax \equiv c \pmod{m}$ has solution only if the GCD (a, m) is a factor of *c*.

7) $8x \equiv 4 \pmod{12} \Rightarrow 2x \equiv 1 \pmod{3}$ x = 2+3k

x = 5 $8(5) = 40 \equiv 4 \pmod{12}$

 $2(2x) = 4x \equiv 2(1) \pmod{3} \Rightarrow x \equiv 2 \pmod{3}.$

DI2 from ISIBILITY

Representation of whole numbers

123,456,789

- 9 = units digit
- 8 = tens digit
- 7 = hundreds digit
- 6 = thousands digit
- 5 = ten thousands digit
- 4 = hundred thousands digit
- 3 = millions digit
- 2 =ten millions digit
- 1 = hundred millions digit

123,456,789

- 9 = units digit
- 8 = tens digit
- 7 = hundreds digit
- 6 = thousands digit
- 5 = ten thousands digit
- 4 = hundred thousands digit
- 3 = millions digit
- 2 =ten millions digit
- 1 = hundred millions digit

 $= 1 = 10^{0}$ $= 10 = 10^{1}$ $= 100 = 10^2$ $= 10^{3}$ $= 10^4$ $= 10^5$ $= 10^{6}$ $= 10^{7}$ $= 10^{8}$

123,456,789 =

 $1 \times 10^{8} + 2 \times 10^{7} + 3 \times 10^{6} + 4 \times 10^{5} + 5 \times 10^{4} + 6 \times 10^{3} + 7 \times 10^{2} + 8 \times 10^{1} + 9 \times 10^{0}$

Any number *m* can be represented by

$\overline{a_n \dots a_2 a_1 a_0}$

 $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + \ldots + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$

Divisible by 2:

$$10^0 = 1 \equiv 1 \pmod{2}$$

 $10^k \equiv 0 \pmod{2}$ $k > 0$

So, any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 0 + a_{n-1} \times 0 + ... + a_2 \times 0 + a_1 \times 0 + a_0 \times 1 \pmod{2}$ $\equiv a_0 \pmod{2}$

Therefore, *m* is divisible by 2 if the units digit a_0 is *even*.

21345 is <u>not</u> divisible by 2 because 5 is not *even*.

23458 is divisible by 2 because 8 is *even*.

Divisible by 3:

$10^k \equiv 1 \pmod{3} \quad k \ge 0$

So, any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 1 + a_{n-1} \times 1 + ... + a_2 \times 1 + a_1 \times 1 + a_0 \times 1 \pmod{3}$ $\equiv a_n + a_{n-1} + ... + a_2 + a_1 + a_0 \pmod{3}$ Therefore, *m* is divisible by 3 if the **sum** of all its digits is divisible by 3.

Divisible by 3:

21347 is <u>not</u> divisible by 3 because 2+1+3+4+7 = 17 is <u>not</u> divisible by 3.

22458 is divisible by 3 because 2+2+4+5+8 = 21 is divisible by 3.

Divisible by 4:

 $10^k \equiv 0 \pmod{4}$ if k > 1

- Any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + \ldots + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 0 + a_{n-1} \times 0 + \ldots + a_2 \times 0 + a_1 \times 10 + a_0 \times 1 \pmod{4}$ $\equiv a_1 \times 10 + a_0 \times 1 \pmod{4}$ $\equiv \overline{a_1 a_0} \pmod{4}$
- Therefore, m is divisible by 4 if the number formed by the last two digits is divisible by 4.

Divisible by 4:

22458 is <u>not</u> divisible by 4 because 58 is <u>not</u> divisible by 4.

13524 is divisible by 4 because 24 is divisible by 4.

Divisible by 5:

$10^0 \equiv 1 \pmod{5}$ $10^k \equiv 0 \pmod{5}$ if k > 0

Any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 0 + a_{n-1} \times 0 + ... + a_2 \times 0 + a_1 \times 0 + a_0 \times 1 \pmod{5}$ $\equiv a_0 \pmod{5}$

Therefore, m is divisible by 5 if the last digit is either 0 or 5.

Divisible by 5:

22458 is <u>not</u> divisible by 5 because 8 is <u>not</u> 0 or 5.

13520 and 13525 are both divisible by 5 because their last digit is 0 or 5.

Divisible by 6:

A number that is divisible by 6 must be divisible by both 2 and 3. So, this number must be:

- 1. Even number, and
- 2. The sum of all its digits is divisible by 3.

Divisible by 6:

21453 is <u>not</u> divisible by 6 because the last digit 3 is odd (although 2+1+4+5+3 = 15 is divisible by 3).

13520 is <u>not</u> divisible by 6 because 1+3+5+2+0 = 11 is not divisible by 3.

13524 is divisible by 6 because the last digit is even and 1+3+5+2+4 = 15 is divisible by 3.

Divisible by 8:

 $10^k \equiv 0 \pmod{8}$ if k > 2

Any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + \ldots + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 0 + a_{n-1} \times 0 + \ldots + a_3 \times 0 + a_2 \times 100 + a_1 \times 10 + a_0 \times 1$ (mod 8)

$$\equiv \mathbf{a_2} \times 100 + \mathbf{a_1} \times 10 + \mathbf{a_0} \times 1 \pmod{8}$$
$$\equiv \overline{\mathbf{a_2}\mathbf{a_1}\mathbf{a_0}} \pmod{8}$$

Therefore, m is divisible by 8 if the number formed by the last three digits is divisible by 8.

Divisible by 8:

13022458 is <u>not</u> divisible by 8 because 458 is <u>not</u> divisible by 8.

13022456 is divisible by 8 because 456 is divisible by 8.

Divisible by 9:

$10^k \equiv 1 \pmod{9} \quad k \ge 0$

So, any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 1 + a_{n-1} \times 1 + ... + a_2 \times 1 + a_1 \times 1 + a_0 \times 1 \pmod{9}$ $\equiv a_n + a_{n-1} + ... + a_2 + a_1 + a_0 \pmod{9}$ Therefore, *m* is divisible by 9 if the **sum** of all its digits is divisible by 9.

Divisible by 10:

$10^0 \equiv 1 \pmod{10}$ $10^k \equiv 0 \pmod{10}$ $k \ge 1$

So, any number $m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$ $\equiv a_n \times 0 + a_{n-1} \times 0 + ... + a_2 \times 0 + a_1 \times 0 + a_0 \times 1 \pmod{10}$ $\equiv a_0 \pmod{10}$

Therefore, m is divisible by 10 if the last digit is divisible by 10 which means the last digit ends in 0.

Divisible by 10:

21345 is <u>not</u> divisible by 10 because the last digit (5) is <u>not</u> 0.

21340 is divisible by 10 because the last digit is 0.

Divisible by 11:

 $10^{k} \equiv 1 \pmod{11} \text{ if } k \text{ is even}$ $10^{k} \equiv 10 \pmod{11} \equiv -1 \pmod{11} \text{ if } k \text{ is odd}$

So, any number

$$m = a_n \times 10^n + a_{n-1} \times 10^{n-1} + \ldots + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 1$$

 $\equiv a_n \times (\pm 1) + a_{n-1} \times (\pm 1) + \ldots + a_2 \times 1 + a_1 \times (-1) + a_0 \times 1 \pmod{11}$
 $\equiv \pm a_n \pm a_{n-1} + \ldots + a_2 - a_1 + a_0 \pmod{11}$
 $\equiv a_n - a_{n-1} + \ldots + a_2 - a_1 + a_0 \pmod{11}$ or
 $\equiv -a_n + a_{n-1} - \ldots + a_2 - a_1 + a_0 \pmod{11}$

Therefore, m is divisible by 11 if the difference of the sum of alternative digits is divisible by 11.

Divisible by 11:

21317 is <u>not</u> divisible by 11 because (2+3+7) - (1+1) = 10is <u>not</u> divisible by 11.

21307 is divisible by 11 because (2+3+7) - (1+0) = 11is divisible by 11.

Divisible by 12:

A number that is divisible by 12 must be divisible by both 4 and 3. So, this number must be:

 Last 2 digits divisible by 4, and
 The sum of all its digits is divisible by 3.

Divisible by 12:

21453 is <u>not</u> divisible by 12 because the last digit 3 is odd (although 2+1+4+5+3 = 15 is divisible by 3).

13520 is <u>not</u> divisible by 12 because 1+3+5+2+0= 11 is not divisible by 3 (although 20 is divisible by 4).

13524 is divisible by 12 because the last digit is even and 1+3+5+2+4 = 15 is divisible by 3 and 24 is divisible by 4.

Divisible by 7:

 $5 \times 10 \equiv 1 \pmod{7}$ $5 \equiv -2 \pmod{7}$

So, any number $m = \overline{a_n \dots a_2 a_1 a_0}$ $5 \times m = 5 \times (\overline{a_n \dots a_2 a_1 a_n})$ $= 50 \times (\overline{a_n \dots a_2 a_1}) + 5 \times a_0$ $\equiv (\overline{a_n \dots a_2 a_1}) + 5 \times a_0 \pmod{7}$ $\equiv (\overline{a_n \dots a_2 a_1}) - 2 \times a_0 \pmod{7}$

Divisible by 7:

If the result of multiplying the last digit by 2 and the product is subtracted from the rest of the number is either 0 or divisible by 7, then this number is divisible by 7.

Examples:

- (1) 861. $86 2 \times 1 = 84$ is divisible by 7 so 861 is divisible by 7.
- (2) 8638. $863 2 \times 8 = 847$. Is 847 divisible by 7? $84 - 2 \times 7 = 70$ is divisible by 7 so the original number 8638 is divisible by 7.

Divisible by 13:

- $40 \equiv 1 \pmod{13}$
- So, any number

$$m = \overline{a_n \dots a_2 a_1 a_0}. \quad \text{Let } k = \overline{a_n \dots a_2 a_1}$$

Then, $m = 10k + a_0.$
 $4 \times m = 40 \times k + 4 \times a_0$
 $\equiv k + 4 \times a_0 \pmod{13}$
 $\equiv k - 9 \times a_0 \pmod{13}$

m is divisible by 13 if 4m is divisible by 13.

Divisible by 13:

If the result of multiplying the last digit by 9 and the product is subtracted from the rest of the number is divisible by 13, then this number is divisible by 13.

Examples:

- (1) **13261**. $1326 9 \times 1 = 1317$ and $131 9 \times 7 = 68$ is <u>not</u> divisible by 13 so 13261 is <u>not</u> divisible by 13.
- (2) **13260**. $1326 9 \times 0 = 1326$ and $132 9 \times 6 = 78$ is divisible by 13 so 13260 is divisible by 13.

Solve 17x + 11y = 73. If *x* and *y* could be any numbers, there are infinite number of solutions.

For example: When x=0, 11y=73 or y=73/11. When x=3, 11y=22 or y=2. However, Diophantine Equations require x and y to be integers.

This equation is equivalent to the problem that asks Mr. Brown bought some apples at 17¢ each and some oranges at 11¢ each. He spent 73¢. How many of each kind did he buy?

Solve 17x + 11y = 73.

By chance, we found (x, y) = (3, 2), (14, -15), (-8, 19). There are many others. Can you see a pattern?

Solve 17x + 11y = 73.

By chance, we found (x, y) = (3, 2), (14, -15), (-8, 19). There are many others. Can you see a pattern?

17x = 73 - 11y $17x \equiv 6x \pmod{11}$ and $73 \equiv 7 \pmod{11}$ $6x \equiv 7 \pmod{11} \equiv 18 \pmod{11}$ or $x \equiv 3 \pmod{11}$

So, x = 3+11k k = integers

11y = 73 - 17x $11y \equiv 11y \pmod{17}$ and $73 \equiv 5 \pmod{17}$

11y = 73 - 17x = 73 - 17(3 + 11k) = 73 - 51 - 187k = 22 - 187k

or y = 2 - 17k k =integers

Solve 3x + 5y = 28.

 $3x = 28 - 5y \qquad 3x \equiv 3x \pmod{5} \quad \text{and} \quad 28 \equiv 3 \pmod{5}$ $3x \equiv 3 \pmod{5} \quad \text{or} \quad x \equiv 1 \pmod{5} \quad \text{or} \quad x = 1 + 5k$ $5y = 28 - 3(1 + 5k) \qquad 5y = 25 - 15k$ $y = 5 - 3k \quad \text{or} \quad y \equiv 5 - 3k \quad k = \text{integers.}$

Not all equations ax + by = c have integer solutions. It has integer solutions only if GCD(a, b) is a factor of c.

- 1. 13x + 11y = 172. 91x - 26y = 33. 73x - 17y = 624. $x^2 - y^2 = 2002$ 5. $x^4 - 4y = 3$
- 5. $x^4 4y = 3$
 - 6. $a^{154} 1$ is divisible by 23 GCD(a, 23) = 1
 - 7. $a^{80} 1$ is divisible by 17 GCD(*a*, 17) = 1
 - 8. Remainder when 3^{50} is divided by 7
 - 9. Remainder when 221^{2012} is divided by 9

1. 13x + 11y = 17 13x = 17 - 11y $2x \equiv 6 \pmod{11}$ $x \equiv 3 \pmod{11}$ x = 3 + 11k 11y = 17 - 13x = 17 - 13(3 + 11k) = 17 - 39 - 143k = -22 - 13ky = -2 - 13k

2. 91x - 26y = 3

GCD(91, 26) = 13 but 13 is not a factor of 3. No solution in integers.

3. 73x - 17y = 62 73x = 62 + 17y $5x \equiv 11 \pmod{17}$ $5x \equiv 45 \pmod{17}$ (or $7(5x) \equiv 7(11) \pmod{17}$ $35x \equiv 77 \pmod{17}$) $x \equiv 9 \pmod{17}$ x = 9 + 17k 17y = -62 + 73x = -62 + 73(9 + 17k) = 595 + 1241k $y \equiv 35 \pmod{73}$ y = 35 + 73k

.
$$x^2 - y^2 = 2002$$

 $x^2 \equiv 0 \text{ or } 1 \pmod{4}$ $y^2 \equiv 0 \text{ or } 1 \pmod{4}$
So $x^2 - y^2 \equiv 0, 1, -1 \pmod{4}$.
But $2002 \equiv 2 \pmod{4}$ No integer solution.
 $(x-y)(x+y) = 2002 = 2 \times 7 \times 11 \times 13$
Lots possibilities: $x-y=1/x+y=2002$ or $x-y=2/x+y=1001$
or ...

5. $x^4 - 4y = 3$

4

No integer solution. $x^4 \equiv 3 \pmod{4}$. But $x^4 \equiv 0 \text{ or } 1 \pmod{4}$

FERMAT's LITTLE THEOREM (*p* = prime number)

- *a* is an integer ≥ 1 . Then $a^p \equiv a \pmod{p}$
- *a* is an integer ≥ 1 and (a, p)=1. Then $a^{p-1} \equiv 1 \pmod{p}$.
- $2^{5-1} = 2^4 \equiv 1 \pmod{5}$ $2^7 \equiv 2 \pmod{7}$ $2^{29} \equiv 2 \pmod{29}$ $10^{10} \equiv 1 \pmod{11}$ $10^5 \equiv 10 \pmod{5}$ but $10^4 \text{ NOT} \equiv 1 \pmod{5}$ $2^4 \text{ NOT} \equiv 2 \pmod{4} \quad 4 \neq \text{prime}$ 6^{3-2} **NOT** $\equiv 1 \pmod{3}$ (6, 3) $\neq 1$

FERMAT'S LITTLE THEOREM

(*p* = prime number and *a* = integer between 1 and *p*) Then $a^p \equiv a \pmod{p}$ or $a^{p-1} \equiv 1 \pmod{p}$.

Proof (Use Modular Arithmetic):

Fact: {*a*, 2*a*, 3*a*, ..., (*p*–1)*a*} is a re–arrangement of {1, 2, 3, ..., (*p*–1)} {4, 2(4), 3(4), 4(4)} = {4, 8, 12, 16} \equiv {4, 3, 2, 1} p = 5, a = 4

$$a \times 2a \times 3a \times \dots \times (p-1)a = a^{p-1}(p-1)!$$
$$1 \times 2 \times 3 \times \dots \times (p-1) = (p-1)!$$

So $a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$ and $a^{p-1} \equiv 1 \pmod{p}$

FERMAT'S LITTLE THEOREM

(*p* = prime number and *a* = integer between 1 and *p*) Then $a^p \equiv a \pmod{p}$ or $a^{p-1} \equiv 1 \pmod{p}$.

<u>Proof (Use Induction)</u>: **Fact**: $(x + y)^p \equiv x^p + y^p \pmod{p}$

Use Induction: Want to prove $a^p \equiv a \pmod{p}$.

a=1 is obviously true.

Assume $a^p \equiv a \pmod{p}$. $(a+1)^p \equiv a^p + 1^p \pmod{p} \equiv a+1 \pmod{p}$. 6. $a^{154} - 1$ is divisible by 23 GCD(a, 23) = 1

 $a^{22} \equiv 1 \pmod{23}$ $a^{154} = (a^{22})^7 \equiv 1^7 \equiv 1 \pmod{23}$

- 7. a^{80} –1 is divisible by 17 GCD(a, 17) = 1 $a^{16} \equiv 1 \pmod{17}$ $a^{80} = (a^{16})^5 \equiv 1^5 \equiv 1 \pmod{17}$
- 8. Remainder when 3^{50} is divided by 7

 $3^6 \equiv 1 \pmod{7}$ $(3^6)^8 \equiv 1 \pmod{7}$ $3^{50} = (3^{48})(3^2) \equiv (1)(9) \pmod{7} \equiv 2 \pmod{7}$

9. Remainder when 221²⁰¹² is divided by 9

 $221^{1} \equiv 5 \pmod{9}$ $221^{2} \equiv 7 \pmod{9}$ $221^{3} \equiv 8 \pmod{9}$ $221^{4} \equiv 4 \pmod{9}$ $221^{5} \equiv 2 \pmod{9}$ $221^{6} \equiv 1 \pmod{9}$ $221^{7} \equiv 5 \pmod{9}$ Every 6 repeats $2012 \equiv 2 \pmod{6}.$ So, remainder should be 7.

Applications

Joanne was expecting six guests and wanted to give them each a bag of candies. Wanting to be fair to all, she divided the candies into 6 equal piles and found that they came out even. Just before the party was to begin a guest called to ask if he might bring a friend. Hence Joanne had to divide the candies into 7 piles; here she found she had two left over. What is the least number of candies she could have had?

 $6n \equiv 2 \pmod{7}$. Upon checking, among the numbers 0, 1, 2, 3, 4, 5, 6, only 5 works. So, the answers are: {5, 12, 19, 26, ...}. So the least number is $6n = 6 \times 5 = 30$ pieces of candies.

<u>Applications</u> <u>Cryptography I</u>

Caesar Cipher Shifting the alphabet forward 3 places.

$$a \rightarrow d, b \rightarrow e, c \rightarrow f, d \rightarrow g, ..., w \rightarrow z, x \rightarrow a, y \rightarrow b, z \rightarrow c.$$

How to send out this message? **<u>attack</u>**.

Caesar Cipher Shifting the alphabet forward 3 places.

a->d, b->e, c->f, ..., w->z, x->a, y->b, z->c.

What is **wklvphvvdjhlvwrsvhfuhw**?

<u>Applications</u> Cryptography I

Caesar Cipher Shifting the alphabet forward 3 places. a->d, b->e, c->f, ..., w->z, x->a, y->b, z->c.

To decipher, shift the alphabets backward 3 places.

Replace letters with numbers: a=0, b=1, c=2, ..., w=22, x=23, y=24, z=25

Examples:

To send a secret message: $D \equiv (E+3) \pmod{26}$

x=23 (E number), so the corresponding E number is $D=(23+3)=26\equiv 0 \pmod{26}$ 0=a. k=10 (E number), so the corresponding E number is $D=(10+3)\equiv 13 \pmod{26}$ 13= n

To decipher a secret message: $E \equiv (D-3) \pmod{26}$

w=22 (D number), so the corresponding E number is $E=(22-3) \equiv 19 \pmod{26}$ 19=t. k=10 (D number), so the corresponding E number is $E=(10-3)\equiv 7 \pmod{26}$ 7= h b=1 (D number), so the corresponding E number is $E=(1-3)=-2\equiv 24 \pmod{26}$ 24=y.

$$3 = \text{Key} \quad \text{K}_{\text{E}} = 3 \quad \text{K}_{\text{D}} = -3$$

<u>Applications</u> <u>Cryptography II</u>

Improved Caesar Cipher Multiply 5 times. Replace letter s with numbers: a=0, b=1, c=2, ..., w=22, x=23, y=24, z=25

 $5a = 0 \rightarrow a, 5b=5-f, 5c=10-k, ...,$ $5w=110\equiv6-g, 5x=115\equiv11-l, 5y=120\equiv16-l, 5z=125-v.$

How to send out the message <u>attack</u>?

<u>Applications</u> <u>Cryptography II</u>

Improved Caesar Cipher Multiply 5 times. Replace letter s with numbers: a=0, b=1, c=2, ..., w=22, x=23, y=24, z=25

 $5a = 0 \rightarrow a, 5b = 5 \rightarrow f, 5c = 10 \rightarrow k, \dots, 5w = 110 \equiv 6 \rightarrow g, 5x = 115 \equiv 11 \rightarrow l, 5y = 120 \equiv 16 \rightarrow q, 5z = 125 \rightarrow v.$

What is euriuaioddosngsnm?

To decipher, divide by 5.

Examples: To send a secret message: $D \equiv 5E \pmod{26}$ x=23 (E number), so the corresponding E number is $D=5\times23=115\equiv11 \pmod{26} 11=1$. k=10 (E number), so the corresponding E number is $D=5\times10\equiv50\equiv24 \pmod{26} 24=q$

<u>Applications</u> <u>Cryptography II</u>

Improved Caesar Cipher Multiply 5 times.

Replace letter s with numbers: a=0, b=1, c=2, ..., w=22, x=23, y=24, z=25 eursuaioddosngsnm

To decipher a secret message: Must find the multiplicative inverse of 5 so that $E \equiv 1/5D \pmod{26} \equiv 21D \pmod{26}$

e=4 (D number), so the corresponding E number is $E=21\times4=84\equiv6\pmod{26}$ 6=g.

u=20 (D number), so the corresponding E number is $E=21\times20=420\equiv4 \pmod{26}$ 4= e

 $5 = \text{key} \quad \text{K}_{\text{E}} = 5 \quad \text{K}_{\text{D}} = 21$

Cryptography III

Can we use $K_E = 4$?

Cryptography III

Can we use $K_E = 4$? $4 \times 3 = 12$ $d \longrightarrow m$ $4 \times 16 = 64 \equiv 12 \pmod{26}$ $q \longrightarrow m$

Cryptography IV

General encipherment rule: $D \equiv (mE+s) \pmod{26}$ m=5, s=18 $D \equiv (5E+18) \pmod{26}$ $\{0, 1, 2, 13, 25\} \rightarrow \{18, 23, 2, 5, 13\}$ $\{a, b, c, n, z\} \rightarrow \{s, x, c, f, n\}$

Bigger is Better Divide into groups of 2: I want a million dollars \rightarrow iw an ta mill io nd ol la rs $D \equiv (mE+s) \pmod{26 \times 26 = 676}$ aa=0, ab=1, ac=2, ..., zy=674, zz=675

Cryptography V

I want your dollar -> iw an ty ou rd ol la r

Cryptography V

I want your dollar \rightarrow iw an ty ou rd ol la r! $D \equiv (mE+s) \pmod{26 \times 27} = 702$ aa=0, ab=1, ac=2, ...az=25, a!=26, ba=27, zy=699, zz=700, z!=701