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1 Warmup Problems

Problem 1 A group of one hundred students, with no two exactly the same height, were arranged
in a square formation. In each of the ten rows, the shortest student raised his or her hand — of
these students, John was the tallest. Then, in each of the ten column, the tallest student raised his
or her hand; of these, Mary was the shortest. Who is taller, John or Mary?

Problem 2 Warmup Activity I need 13 volunteers. We deal out a full deck of 52 playing cards to
the volunteers, each gets 4 cards. I'd like to have them each give me a card with a different rank
(Ace, 2, 3, 4,...,J, Q, K). Is this always possible? Or can we find a way to give them out 4 cards
each so that we can’t get a different card from each person? Of course, if we can do it, they are
left with 3 cards each. If so, can I again manage to get a different card from each person? And if
so, could we do it when they each have only two cards left? (of course, if we get them down to one
card each, we can surely finish).

Could we do the same game with four volunteers, thirteen cards each, and I want to get a
different suit from each of them? (Clubs, Diamonds, Hearts, Spades)

Problem 3 I want to pick a unique integer from each set. Can we do it? (They didn’t need to all
have 3 elements in them, it was just easier to generate that way). What can go wrong? If it can’t
be done in some cases, how can we be sure?

First example
Set 1: {6, 8,10} | Set 2: {4,7,8} | Set3: {1,5,9} | Set4: {4,6,8} Set 5: {2, 7, 10}
Set 6: {1,8,9} | Set7: {1,2,7} | Set8 {2,7,10} | Set9: {1, 4, 10} | Set 10: {1, 5, 6}

Second example
Set 1:  {1,3,5} | Set2: {4,5,10} | Set 3: {2,4,9} | Set4: {1,7,10} | Set5: {2,8, 9}
Set 6: {3,580 | Set7: {4,9,10} | Set 8 {2,7,9} |Set9: {3,7,9} |Set10: {1,6, 8}

Third example
Set 1:  {3,5,9} | Set2: {3,5,6} | Set3: {4,8,10} | Set4: {5,6,7} Set 5: {2, 7, 8}
Set 6: {1,3,5) | Set7: {1,7,9} |Set8 {4,6,9} |Set9: {1,6,9} | Set10 {5, 7,9}

Fourth example
Set 1: {2,6, 8} Set 2:  {5,6, 8} Set 3:  {3,5,9} | Set4: {4,7,8} Set 5: {1, 9, 10}
Set 6: {4,6,8} | Set7: {2,4,9} | Set8& {4,5,8 |Set9: {5, 7,8 | Set10: {1,2, 9}

2 Contest-style Problems once we’ve learned the theorem

Who is "marrying” whom?

Problem 4 In a 2n x 2n chessboard, there are n rooks in each row and each column of the board.
Show that there exist 2n rooks no two of whom are in the same row and same column. (Hint: we
are “marrying” rows to columns.)



Problem 5 (Putnam 2012) A round-robin tournament of 2n teams lasted for 2n — 1 days, as
follows. On each day, every team played one game against another team, with one team winning
and one team losing in each of the n games. Over the course of the tournament, each team played
every other team exactly once. Can one necessarily choose one winning team from each day without
choosing any team more than once?

Problem 6 (Kazakhstan 2003) We are given two square sheets of paper with area 2003. Suppose
we divide each of these papers into 2003 polygons, each of area 1. (The divisions for the two piece of
papers may be distinct.) Then we place the two sheets of paper directly on top of each other. Show
that we can place 2003 pins on the pieces of paper so that all 4006 polygons have been pierced.

Problem 7 (Canada 2006) In a rectangular array of nonnegative reals with m rows and n columns,
each row and each column contains at least one positive element. Moreover, if a row and a column
intersect in a positive element, then the sums of their elements are the same. Prove that m = n.

Problem 8 (Baltic Way 2013) Santa Claus has at least n gifts for n children. For i € {1,2,...,n},
the ith child considers x; > 0 of these items to be desirable. Assume that

Prove that Santa Claus can give each child a gift that this child likes

3 A few theorems that follow from Hall’s Matching Theorem

We might mention one or two of these today, though they would really require a second math circle
session to really cover them. (And there are several other theorems we could add to this list!)

Theorem 1 (Kd8nig’s Matching Theorem) Prove that if all the vertices of a bipartite graph
have the same degree, then it has a perfect matching. (compare to the warmup problems)

Wait! What’s a bipartite graph? What does it mean for vertices to “have the same degree”?
What’s a perfect matching? (We might actually answer these questions today)

Theorem 2 (Birkhoff-von Neumann) Any doubly-stochastic matriz may be represented as a
convexr combination of permutation matrices

Wait! What’s a doubly-stochastic matrix? What’s a permutation matrix? What’s a convex
combination? And what on earth does this have to do with Hall’s marriage theorem? [Hint: each
row of the matrix is going to "marry” each column and we’re doing to use that to get one of our
permutation matrixes.]

Theorem 3 (Dilworth) If every antichain in a (finite) partially ordered set has at most m ele-
ments, then the set may be partitioned into m chains.

Wait! What’s a partially ordered set? What’s a chain? What’s an antichain?



4 Hall’s marriage theorem

Here’s how it’s traditionally stated. I find it a little cringe-inducting, but it’s really a theorem
about bi-partite graphs.

Theorem 4 (Hall’s marriage theorem) Given a collection of people containing n men and at
least n women, the following two properties are equivalent:

e For any subset of the men [including the set of all n men/, if the number of men in the subset
s k, then there are at least k women in the collection known to at least one man in the subset.

o There is a way to match each man with a distinct woman he knows in the collection.

Yuck. But does the mathematical idea make sense? Here’s way to say it more abstractly.

4.1 Hall’s marriage theorem — abstractly

Theorem 5 (Hall’s matching theorem) Given a collection of n sets of positive integers: Ay, Aa, . ..

(the sets are not necessarily distinct), the following two properties are equivalent

e For any subcollection of the n sets [including the subcollection of all the sets], if the number
of subsets in the subcollection is k, then the union of those subsets contains at least k distinct
integers.

e There is a way to pick a distinct integer from each set (i.e. the same integer is not chosen
for two or more sets).

Can you see that this is equivalent to the previous description? The “men” in the previous description
are the indices (i.e. the subscripts) of the sets, and the “women” known to the ith “man” are the integers
belonging to the set A;.

4.2 Another even mathier way to say it

Definition 6 A bipartite graph has two disjoint sets of vertices A and B such that every edge in
the graph connects a vertex in set A to a vertex in set B.
Further, for every set of vertices X C A we can define the set

Yx = {y € B | there’s an edge in the graph from some element of X to y}.

Theorem 7 (Hall’s marriage theorem) If we have a finite bipartite graph as above then the
condition that, for every subset of vertices X C A, we have | X| < |Yx| is equivalent to the condition
that there is a subset of edges of the graph (aka a matching) that takes every vertex in A to a distinct
vertex in B.

Can you see that this is equivalent to the previous two descriptions?



5 Proof of the theorem

('m going to use the second way of expressing the theorem, with the sets Ay, As, ..., A,) If we
have trouble visualizing it, we might want to go back to the card example.)

The theorem says that two things are equivalent, but maybe we can immediately see why IF
there’s a way to select a distinct integer from each set, the weird condition on unions of subcol-
lections must also be true. (can someone explain it during the circle?) So let’s focus on the other
direction, showing that when the weird condition is met, there must be a way to select a distinct
integer from each set.

We'll use induction on n. The base case, when n = 1, is pretty immediate: There’s exactly
one set A; and it has at least one integer in it. If we have time, we might explicitly work out the
case when n = 2 in class, too, though we don’t need to do that for our proof.

5.1 The Inductive Step

For the inductive step, suppose we’ve managed to verify the result really is true for all the positive
integers up to n. We’d like to use that to prove the result for n + 1. So we begin with a collection
of sets A1, As, ... Ay41 that obey the weird condition on unions of subcollections, and we want to
find a way to pick a distinct integer from each set.

So let’s just look at the “last” subset, A,41. It contains at least one integer (why?), so let’s
just take some integer from it, let’s call it x,,+1 and see if we it is possible to select distinct integers
other than x,41from all the other sets A1, A +2,... A,. If we can, great, we’re done! But what if
it simply isn’t possible to do and we’ve painted ourselves into a corner?

5.2 What might go wrong

By the inductive hypothesis, that means that, after we removed x,,41 from all the sets Ay, As, ... Ay,
the weird condition on unions of subintervals wasn’t met. In other words, there must be a subcol-
lection of these n sets, whose union has fewer integers than the number of sets in the subcollection.
But if you restore 11 to the sets in that subcollection, their union would have at least as many
integers as the number of sets in that subcollection. (do you see why?) So that means the union
of the sets in that subcollection must have ezactly the same number of integers as there are sets in
the subcollection (do you see why?).

Let’s call the sets in that subcollection By, Ba, ... By, and the remaining sets C'1, Co, ... Cpi1_k.
Since k is less than or equal to n, we can apply the induction hypotheses to the sets By, Bo, ..., B,
so we can pick distinct representatives for each of them.

5.3 Out of the corner

If we then remove any occurences of those representatives from all of the sets C1,Co,...Chi1—k,
we’d like to verify that these sets obey the weird union of subcollections property. That is, there
will be at least j distinct integers in the union of any subcollection of j of these sets (for any j
between 1 and n + 1 — k. But if some such subcollection of j of these sets had a union that was
smaller than j, then the union of these sets with the sets Bi, Bs, ..., By would have size smaller
than j + k, which contradicts the conditions of the problem.



6 applying that theorem to the card activity

In the card puzzle we played with, each pile is being ”married” to a rank; or, to describe the problem
another way: each pile of cards represents a vertex in set A, and each rank of card represents a
vertex in set B, and there’s an edge between a pile and a rank if there’s at least one card of that
rank in the pile. By having each pile give us one card with a different rank, we are creating a
matching between the pile-vertices and the rank-vertices.

In either case, since each pile has the same number of cards as remain for each rank, you can
see by the pigeonhole principle that the union of k distinct piles must contain at least one card for
at least k distinct ranks.



