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Note: This is the second part of a two-lecture series on Bayes’ Theorem–this half will finish up

some of the things we did not get to last week, discuss exactly what conditional probability even means,

and give a “proof with intuition” of Bayes’ Theorem.

Section -1: Bayes’ Theorem
Write Bayes’ Theorem below:

Now for some practice with the theorem that we didn’t get to last week. Try solving each

of the following problems twice: once intuitively and once by explicitly using Bayes’ Theorem,

and note that both methods generally end up doing the same thing:

Problem -1.1: You have two bags of marbles, one with 7 red and 3

blues marbles, and the other with 3 red and no blue marbles. You choose a

bag randomly, then you draw a marble from the bag at random. The

marble is blue. If you were to draw another marble from the same bag,

what is the probability that it would be blue?

Problem -1.2: You have two bags of marbles, one with 7 red and 3

blues marbles, and the other with 3 red and 5 blue marbles. You choose a

bag randomly, then you draw a marble from the bag at random. The

marble is blue. If you were to draw another marble from the same bag,

what is the probability that it would be blue?

Problem -1.3: A certain test for J-21315973 has a sensitivity of 90%

and a specificity of 95%. Exactly 10% of people in your region of Mathland

test positive for the disease. Given that you tested positive with this test,

what is the probability that you actually have J-21315973?



Section 0: Remember Last Week?

Now, with our new Bayesian machinery, we can finally answer the question posed

in Section 0 last week. First, let us set up our hypothesis and evidence.

Our hypothesis, H, should be that a given person in the Bay Area is the

perpetrator of the crime, and our evidence, E, is that the given person (from the Bay

Area) is 6 feet 6 inches tall, owns vintage edition Groucho Marx glasses, and owns a

three-foot-tall tophat.

Now, let us compute. What is P(H)? Well, P(H) should just be the probability a

given person in the Bay Area is the perpetrator of the crime. Now there are

approximately 8 million people in the Bay Area, and only one of them is the perpetrator.

So P(H) is .
1

8,000,000

What about P(E)? Well, the Bureau of Strange Statistics tells us that

approximately one in five million people are 6 feet 6 inches tall and own both vintage

edition Groucho Marx glasses and a three-foot-tall tophat, so the odds that any person

in the Bay Area satisfies these conditions, in the absence of other information, should be

.
1

5,000,000

And what about P(E|H)? Well, we know that the perpetrator is 6 feet 6 inches tall

and own both vintage edition Groucho Marx glasses and a three-foot-tall tophat, so

P(E|H) should just be 1.

Putting it all together using Bayes’ Theorem, we find that

. So since James Smith satisfies the𝑃(𝐻|𝐸) = 𝑃(𝐸|𝐻)*𝑃(𝐻)
𝑃(𝐸) =

1
8.000.000 ·1

1
5,000,000

= 5,000,000
8,000,000 = 5

8

evidence criteria and is in the Bay Area, the probability that he is the real perpetrator is

, which is a lot less than the that a certain Los Angeles jury might assume.
5
8

4,999,999
5,000,000

So Bayes’ Theorem comes in to save the day, and we have a probability that
5
8

James Smith is actually the handout thief… Just kidding, there’s something else that we

missed. We’ll go over what’s going on later, but first, onwards to conditional probability!



Section 1: The Intuition of “Given”

In our last class, we used the word “given” a lot. It’s time to explain what that

actually means.

In the following problems, we will have three bags: bag A, bag B, and bag C. Bag

A contains 1 red and 2 blue marbles, bag B contains 2 red and 3 blue marbles, and bag C

contains 3 red and no blue marbles.

In addition, R will be the event that a red marble is picked, L will be the event

that a blue marble is picked, D will be the event that bag A is chosen, E will be the event

that bag B is chosen, and F will be the event that bag C is chosen.

Problem 1.1: You pick a random bag from bags A, B, and C, then pick

a random marble from that bag. What is the probability that the marble

you pick is red? In other words, compute P(R).

Problem 1.2: You pick a random bag from bags A, B, and C, then pick

a random marble from that bag. Given that you picked bag B, what is the

probability that the marble you pick is red? In other words, compute

P(R|E).

One way to solve a problem such as Problem 1.1 is to create a “space of possible

outcomes,” and then just count up all the probabilities where the event R happens. But

what about a problem like Problem 1.2?

Problem 1.3: Make a diagram of all possible outcomes of our

bag-and-marble picking scenario. Use it to answer Problems 1.1 and 1.2.

So one way to think about the answer to Problem 1.2 is that P(R|E) is 0.4,

because when event E happens (you pick from bag B), there is a 0.4 chance that event R

happens (a red marble is picked).

That is to say, R happens in 0.4 of the instances where E happens.

In other words, the probability of R and E both happening is 0.4 times the

probability where only E happens.



On the other hand, there’s nothing special about the

events R and E. Indeed, this logic works for any events X and Y!

This is because P(X|Y) asks for the probability that X happens

only in the instances where Y occurs; in other words, the

probability of X given Y is the probability that X happens when

you restrict yourself to only the cases where Y occurs.

To see how this concludes, let the diagram

on the right be a diagram representing the

probabilities of X and Y, where the area of each

region is proportional to the probability that the

events (or lack of events) on the region occur.

It should be fairly clear that the probability

that Y occurs is the ratio of the area of the shaded

region to the area of the entire region.

Now, take a look at what happens when you restrict yourself to only

the cases where Y happens, as shown on the left. Now the probability that

X occurs, restricted to the cases where Y happens, should be the ratio of

the area of the “X and Y” box to the area of the entire shaded region.

However, note that P(X and Y) is the ratio of the area of the “X and Y” box

to the area of the entire region, and P(Y) is the ratio of the area of the shaded region to

the area of the entire region. So P(X and Y) divided by P(Y) should be equal to the ratio

of the area of the “X and Y” box to the area of the entire shaded region.

On the other hand, this ratio is just the probability that X occurs, restricted to the

cases where Y happens, which is the same as P(X|Y).

This gives rise to the formula for conditional probability, which you should write

below:



Another way to look at this formula is to rearrange it a bit. Consider the following

few problems:

Problem 1.3: You pick a random bag from bags A, B, and C, then pick

a random marble from that bag. What is the probability that you picked

bag A? In other words, compute P(D).

Problem 1.4: Given that you picked bag A, what is the probability

that the marble you pick is red? In other words, compute P(R|D).

Problem 1.5: What is the probability that the marble you picked was

red, and that you picked bag A? In other words, compute P(R and D).

Just from the way Problem 1.5 is solved, we find that P(X and D)=P(D)*P(X|D)

must hold. Indeed, P(X and Y)=P(Y)*P(X|Y) for any events X and Y, and rearranging we

get our conditional probability formula.

Section 2: Back to Bayes-ics

For this section, we have the same setup (bags A through C, event names) as

Section 1.

I would recommend you solve each of these next three problems intuitively, and

then think about why your answer lines up with the conditional probability formula.

Problem 2.1: You pick a random bag from bags A, B, and C, then pick

a random marble from that bag. Given that you picked bag A, what is the

probability that the marble you pick is blue? In other words, compute

P(L|D).

Problem 2.2: You pick a random bag from bags A, B, and C, then pick

a random marble from that bag. Given that you did not pick bag B, what is

the probability that the marble you pick is red? In other words, compute

P(R|not E).



Problem 2.3: You draw two marbles from bag B, randomly and

without replacement. Given that the first marble was red, what is the

probability that both marbles are the same color?

Problem 2.4: You draw two marbles from bag A, randomly and

without replacement. Given that the first marble was blue, what is the

probability that both marbles are different colors?

Alright, these problems so far have had the “given” condition occur before the

other condition. What if we flipped that?

Problem 2.5: You pick a random bag from bags A, B, and C, then pick

a random marble from that bag. Given that you drew a blue marble, what is

the probability that you picked bag A? In other words, compute P(D|L).

And just like that, we’re back to Bayes’ Theorem. Why? Well, just take a look at

how you most likely computed P(D and L) there.

Problem 2.6: From just the conditional probability formula, prove

Bayes’ Theorem.

So Bayes’ Theorem is bayes-ically just telling you the conditional probability

formula, and then giving a method to compute the numerator.

The reason Bayes’ Theorem might feel less intuitive even than the conditional

probability formula is that it applies conditional probability in a direction that might feel

less familiar. Normally, with conditional probability, you have some events X and Y, and

you compute P(X|Y), but Y occurs after X or is in some way affected by X, which makes

the “given” feel intuitively sensible. Whereas in Bayes’ Theorem, you’re typically

calculating the probability of some hypothesis based on some evidence, where the

evidence, the given condition, is the thing affected by the hypothesis. Here is an

example, and not how different it feels from Problem 2.3:



Problem 2.7: You draw two marbles from bag B, randomly and

without replacement. Given that the second marble was red, what is the

probability that both marbles are the same color?

The math doesn’t care that Problem 2.7 feels more like inference and while

Problem 2.3 feels more direct, but it is worth exploring why the conditional probability

theorem applies even when it feels the given condition is the dependent one.

Maybe the best explanation for this phenomenon

is the diagram used in our initial justification of

conditional probability. Note that this diagram

absolutely does not care whether X or Y came “first” or

which is dependent on the other, so the logic we used

earlier to justify the formula should still apply.

It is also easier to justify with concrete numbers,

such as with the false positives cases or the following

problems:

Problem 2.8: In Mathland (population

10,000), there are nine times as many

farmers as librarians. 25% of the farmers

wear glasses, and 50% of the librarians wear

glasses. Given that a random mathlandian

citizen wears glasses, what is the probability that they are a librarian?

Problem 2.9: In Mathland (population 10,000), there are 19 times as

many farmers as librarians. 25% of the farmers wear glasses, and 27% of

citizens in total wear glasses. Given that a random mathlandian citizen

wears glasses, what is the probability that they are a librarian?

The principles behind these problems carry over to cases where things are less

discrete, but it’s definitely more apparent why Bayes’ Theorem works when we’re

dealing with actual numbers of people; choosing a random outcome in a more

continuous problem is slightly less intuitive than choosing a random person in a

problem like 2.8 or 2.9.



Section 3 (if time): Monty Hall with Bayes

Let’s go back to last week’s Monty Hall problems, but now use Bayes to figure

them out! For a reminder, here are the problems:

Problem 3.1 (Monty Hall): You are in a game show, trying to win a

car. In this game show, there are three doors, one on the left, one in the

middle, and one on the right. Behind one door is a sports car, and behind

the other two doors is nothing. You are allowed to choose a door, and you

choose the door on the right. The game show host then says “now, I will

open one of the other two doors with nothing behind it,” and opens the

door on the left, revealing nothing. You are allowed to switch your guess to

the unopened middle door. What is the probability that the middle door

has the sports car behind it?

Problem 3.2 (Monty Hall Variant): In the same scenario as before,

you choose the door on the right, but the game show host then says “now, I

will open the leftmost of the remaining two doors with nothing behind it,”

and opens the door on the left, revealing nothing. You are allowed to switch

your guess to the unopened middle door. What is the probability that the

middle door has the sports car behind it?

Problem 3.3 (Another Monty Hall Variant): In the same scenario as

before, you choose the door on the right, but the game show host then says

“now, I will choose one of the two other doors at random and open it,” and

opens the door on the left, revealing nothing. You are allowed to switch

your guess to the unopened middle door. What is the probability that the

middle door has the sports car behind it?

Bayes’ Theorem can be pretty helpful with answering questions that have

difficult-to-intuit answers, like the Monty Hall problems. Indeed, the next question

might seem daunting–almost impossible, even–but Bayes’ Theorem answers it quite

nicely.



Problem 3.4 (Monty Chaos): You are in a game show, trying to win a

car. In this game show, there are four doors, labeled “1,” “2,” “3,” and “4”.

Behind one door is a sports car, and behind the other three doors is

nothing. You are allowed to choose a door, and you choose door “4.” The

game show host then says “now, I will open one of the other three doors

with nothing behind it. Here is how I will choose how to pick:

-If door 1 has the sports car, I will open door 2 or door 3 each with

probability 1/2.

-If door 2 has the sports car, I will open door 1 with probability 2/3,

or door 3 with probability 1/3.

-If door 3 has the sports car, I will open door 1 with probability 3/4,

or door 2 with probability 1/4.

-If door 4 has the sports car, I will open door 1 with probability 7/12,

door 2 with probability 1/4, and door 3 with probability 1/6.”

Then, she opens door 1, revealing nothing. You are allowed to switch

your guess to the unopened middle door. What is the probability that each

door has the sports car behind it?

Section 4: Back to the Original Problem

Alright, now with our new experience with Bayes’ Theorem, let’s figure out what

the exact odds that James Smith was the killer are.

Problem 4.1: Figure out the error in the logic of the “solution” in

section 0. (Hint: there’s a very subtle piece of information that was left

out).


