Comparing Infinities I

Here is a summary of what was discussed at the first meeting and additional exercises.

- 1. Some notation
 - $\mathbb{N} := \{1, 2, 3, 4...\}$ the set of natural (counting numbers)
 - $\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, 3, \dots\}$ the set of integers
 - $\mathbb{Q} := \{m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$ the set of rational numbers (fractions)
 - \mathbb{R} the set of real numbers
 - For a *finite* set X, we denote by #X the number of elements in X.
- 2. Let $f: X \to Y$ be a function from a set X to a set Y. We say that
 - f is *injective* (or an *injection*, or *one-to-one*) if it sends distinct elements of X to distinct elements of Y, i.e. f(a) = f(b) implies a = b.
 - f is surjective (or a surjection, or onto) if the range of f is all of Y, i.e. for every $y \in Y$ there exists $x \in X$ such that y = f(x).
 - f is bijective (or a bijection, or one-to-one correspondence) if it is both injective and surjective. [Such functions are also called *invertible*. Can you guess why?]
- 3. Let X and Y be two sets. We say that
 - X and Y have the same cardinality if there exists a bijection $f: X \to Y$; notation: |X| = |Y|.
 - the cardinality of X is less than or equal to the cardinality of Y if there is an injection $f: X \to Y$; notation $|X| \le |Y|$.
 - the cardinality of X is greater than or equal to the cardinality of Y if there is a surjection $f: X \to Y$; notation $|X| \ge |Y|$.
 - the cardinality of X is less than the cardinality of Y if $|X| \leq |Y|$ and $|X| \neq |Y|$; notation |X| < |Y|.
- 4. Some simple (but important) facts
 - If X and Y are finite sets then
 - -|X| = |Y| if and only if #X = #Y.
 - $-|X| \leq |Y|$ if and only if $\#X \leq \#Y$.
 - $-|X| \ge |Y|$ if and only if $\#X \ge \#Y$.
 - If X is a finite set and Y is infinite, then |X| < |Y|.
 - $|X| \ge |Y|$ is equivalent to $|Y| \le |X|$. [This is not a tautological statement! Prove it.]
 - If $|X| \leq |Y|$ and $|Y| \leq |Z|$, then $|X| \leq |Z|$. [Prove this!]
 - If |X| = |Y| and |Y| = |Z|, then |X| = |Z|. [Prove this!]

[It is also true that $|X| \leq |Y|$ and $|X| \geq |Y|$ imply |X| = |Y|, but it is harder to prove.]

5. A set X is called *countably infinite* if $|X| = |\mathbb{N}|$, i.e. elements of X can be labeled by natural numbers. We say that X is *countable* if it is finite or countably infinite.

We saw that countably infinite sets are the *smallest* among infinite sets. More precisely,

- X is finite if and only if $|X| < |\mathbb{N}|$;
- X is infinite if and only if $|X| \ge |\mathbb{N}|$;
- If X is countable and $Y \subset X$, then Y is also countable.
- 6. Using our experience with the *Infinity Hotel* we established the following facts:
 - The union $X \cup Z$ of a countably infinite set X and a finite set Z is countably infinite.
 - The union $X \cup Y$ of two countably infinite sets is countably infinite.
 - If X_1, X_2, X_3, \ldots , is a sequence of sets in which each X_k is countably infinite, then the union $X_1 \cup X_2 \cup X_3 \cup \ldots$ is also countably infinite.

In particular, this shows that the sets \mathbb{Z} and \mathbb{Q} are countable.

7. Exercises

- (1) Prove the three 'simple facts' from #4 above (with words Prove this!).
- (2) Show that the following sets are countable
 - (a) All binary codes (arbitrary finite combinations of zeroes and ones).
 - (b) All possible texts that can be typed on the standard keyboard.
 - (c) All polynomials $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ with integer coefficients $a_k \in \mathbb{Z}$.
 - (d) The set of all periodic sequences of rational numbers (i.e. sequences a_1, a_2, a_3, \ldots with $a_k \in \mathbb{Q}$ and $a_{k+d} = a_k$ for some $d \in \mathbb{N}$ and all $k \in \mathbb{N}$).
- (3) Any collection of disjoint intervals on \mathbb{R}
- (4) Non-intersecting disks on the plane
- (5^*) Non-intersecting figure eights on the plane
- (6) Prove that if X is infinite and Y is countable then $|X \cup Y| = |X|$.
- (7) Prove that any collection of non-intersecting intervals on the real line is countable.
- (8^{*}) A collection of non-intersecting figure 8's of arbitrary size (nesting is allowed) is drawn on the plane. Prove that this collection is countable.