Comparing Infinities II

- 1. First examples of uncountable sets.
 - (a) Denote by S the set of all binary sequences, i.e. of infinite sequences a_1, a_2, a_3, \ldots , where each a_k is equal to either 0 or 1.
 - (b) The set S of sequences can be identified with the set of all functions from N to $\{0, 1\}$: a function $f : \mathbb{N} \to \{0, 1\}$ is represented by the sequence $f(1), f(2), f(3), \ldots$
 - (c) S can also be identified with the set $\mathcal{P}(\mathbb{N})$ of all subsets of \mathbb{N} : a sequence (a_n) corresponds to the subset $\{n \in \mathbb{N} \mid a_n = 1\}$.
 - (d) Theorem. The set S of all binary sequences is not countable. We proved it using Cantor's *diagonal method*.
 - (e) Corollary. $|\mathbb{N}| < |\mathfrak{S}| = |\mathcal{P}(\mathbb{N})|$.
- 2. Two general results about cardinality
 - (a) **Cantor's Theorem.** Denote by $\mathcal{P}(X)$ the set of all subsets of a set X. Then for every set X, we have $|X| < |\mathcal{P}(X)|$, i.e. the set of subsets has a greater cardinality than X.

Sketch of a proof. Assume that there exists a surjection $f : X \to \mathcal{P}(X)$. Consider the subset $Y := \{x \in X \mid x \notin f(x)\}$. Since f is onto, there is $y \in X$ such that f(y) = Y. By definition of Y, this implies that $y \notin Y$. But then, again by definition of Y, this means that $y \in Y$. Contradiction.

- (b) Cantor-Bernstein Theorem. If $|X| \leq |Y|$ and $|Y| \leq |X|$, then |X| = |Y|.
- 3. Definition. We say that a set X has cardinality of the continuum if $|X| = |2^{\mathbb{N}}| = \mathcal{P}(\mathbb{N})$.
- 4. Examples. Each of the following sets has cardinality of the continuum.
 - Open unit interval $(0, 1) = \{x \in \mathbb{R} \mid 0 < x < 1\}.$
 - The set \mathbb{R} of real numbers.
 - The set of all irrational numbers, i.e. $\mathbb{R} \mathbb{Q}$.
 - The set of all transcendental numbers (recall that they are real numbers which are not roots of any polynomial with rational coefficients).
 - The open square $(0,1)^2 = (0,1) \times (0,1) = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1, 0 < y < 1\}.$
 - The plane \mathbb{R}^2 .
- 5. Exercises Show that each of the following sets has the cardinality of the continuum.
 - (a) Closed interval [0, 1].
 - (b) The union of two closed intervals, $[0,1] \cap [2,3]$.
 - (c) The closed square $[0,1]^2 = [0,1] \times [0,1]$.
 - (d) The interval (0, 1) from which a countable subset removed.
 - (e) Any subset of the plane containing an arc of some circle.

- (f) The set of all decimal sequences, i.e. $\{a_1, a_2, a_3, \dots | a_i \in \{0, 1, 2, \dots, 9\}\}$.
- (g) The set of all sequences of natural numbers, i.e. a_1, a_2, a_3, \ldots , where $a_k \in \mathbb{N}$.
- (h) The set of all sequences of real numbers.
- (i) The set of all straight lines on the plane.