Set theory:
Set - collection of objects,
$$\phi$$

· $\frac{3}{4}a, bill = \frac{9}{4}b, ail
· $\frac{9}{4}a, ail = \frac{9}{4}ail
· $\frac{9}{4}a, ail = \frac{9}{4}ail$
· $\frac{7}{4}a, ail = \frac{9}{4}ail$
· $\frac{7}{4}a, ail = \frac{9}{4}ail$
· $\frac{1}{4}x \in \mathbb{Z}$ + $\frac{1}{4}x = 1il$
· $\frac{1}{4}x \in \mathbb{Z}$ + $x = 1il$
· $\frac{1}{4}x \in \mathbb{Z}$ + $\frac{1}{4}x = 1il$
· $\frac{1}{4}x = 1il$$$

· Def: A binory relation R between X, Y
is a subset of X = Y
(Cartesian product,)
(x,y)
· Def: A function f from X - Y is a b.r.
s.e.
$$\forall x \in X$$
, $\exists ! g \in Y$ s.e. $(x,y) \in f$
 $\vdots : ::$
· Ef Z = X, then $f|_{Z}$ is a function
 $\Im(x,y) \in f | x \in Z \notin$

· ing(f) = gy EY (Jx EX, (x,y) Eff · Given ZCY, ['(Z) := JxEX [JyEZ (x)] · Def: f is injective if $\forall x_1, x_2 \in X$ $f(x_1) = f(x_2) \implies x_1 = x_2$. · Def: f is sujective if YyEY $\exists x \in X \text{ s.t. } f(x) = y$. ····· e.g.

•

Def: Given an équivalence rel. R on X,
the equivalence class of
$$x \in X$$
 is
 $[x] := \frac{2}{3} y \in X | (x, y) \in R^{2}$
 $[y]$, we know $y \in [y]$,
Fact: $\forall (x, y) \in R$, then $[x] = [y]$
Pf: Need to show $[x] \subset [y]$, and $[y] \subset [x]$.
Let $t \in [x]$, then $(x, t) \in R$.
But also, $(y, x) \in R$. $\Longrightarrow (y, t) \in R$.
 $t \in [y]$, $[x] \subset (y]$.

Easy check: . If fixed function, then
the relation
$$R = \frac{1}{2} (1, x) [f(x) = f(x)]^2$$

is an eq. rel.
· $X = \mathbb{Z}$, $R = \frac{1}{2} (x, y) [x - y]$ is even \overline{f} .
Also an eq. rel.
Groups: Think of as symmetries
"Symmetry":
· Combining two symmetries should be a sym.
· Doing nothing is a sign.
· Any sym. should be invertible.

i Def: A group is a set G,
together with a function
$$M: G \times G \rightarrow G$$

(a,b) $t \rightarrow ab$
i) Associativity:
 $\forall g,h,k \in G, \quad m(m(g,h), k) = m(g, m(h,k))$
(2.3). $\forall = 2.(3.4)$
ii) Identity: $\exists e \in G \quad s.t. \quad \forall g \in G$
 $ge = g = eg \qquad f \circ g$
iii) $\forall g \in G \quad \exists h \in G \quad s.t. \quad gh = hg = e$

Symmetric group on a set X.

$$G := Sym(X) := Z$$
 bijection $X \rightarrow XZ$
and "multiplication" in function composition.
Closure: given bijections $f, g \in Sym(X)$.
 $f \circ g$ is bijective. Frijectivity:
 $(f \circ g)(x) = (f \circ g)(x')$ with $x = x'$
 $f(g(x)) = f(g(x')) \Longrightarrow g(x) = g(x')$.
 $\implies x = x'$.

Surj: Suppre XEX, WTS JXEX s.E. $(f \circ g)(x') = \chi.$ $\exists a \in X$ s.e. f(a) = X. $\exists x \in X \quad s.t. \quad g(x) = a$ $\implies f(q(x')) = X.$ $\Longrightarrow (f \circ g)(x) = x \longrightarrow (f \circ g) i s_{f}.$

· Assoc. ~ · Identity. / ' Inverser. V ze? Er: // Syn (4,2) trivid is the 97. 4 Sym (31, 23) Fa.a=e 1(ze, az where a = a'

Cancellation:
$$g \times = g \cdot g$$

 $g'(g \times) = g'(g \cdot g) \longrightarrow \times = g$
 $g \times = y \cdot g$. $???$

Subgroups:
· Fact:
$$(g^{-1})^{-1} = g \longrightarrow (g^{-1})^{-1} = g$$

· $(ab)^{-1} = b^{-1}a^{-1} \longrightarrow (ab)(b^{-1}a^{-1})$
· $(ab)^{-1} = a \cdot e \cdot a^{-1}$
 $a (b \cdot b^{-1})a^{-1} = a \cdot e \cdot a^{-1}$
 $= a \cdot a^{-1} = e$

Def: For G a group, a subset HCG is called a subgroup of G if the gp. operation restricted to HXHEGXG. night H into a group. Denote H<G $C \sim \underline{C}, \underline{C}$ Subgps: · Klein - 4 Viergrup 1-element subgp: 3e? G = ge, a, b, c?h Z-: ": Zeal, Ze, Gized

Thm: (subgp. criturion)
A nonempty subset
$${}^{H}of G$$
 is a subgp.
 \Longrightarrow $\forall x, y \in H$ $x \cdot y^{-1} \in H$
 $Pf: (<=)$
 $1)$ Let $h \in H$, let $(x, y) = (h, h)$.
 $h \cdot h^{-1} = e \in H$ (identig \checkmark)
 $2!$ Set $(x, y) = (e, h)$. Then $x \cdot y^{-1} = e \cdot h^{-1} = h^{-1} \in H$.
 \Longrightarrow Cinnerses \checkmark)
 $3)$ $= f + h, k \in H$ $(x, y) = (h, k^{-1})$.
 $= > h \cdot (k^{-1})^{-1} = h \cdot k \in H$.
 $+1 \leq G$

Def: A group is:
A set G with M an operation
(a function
$$\stackrel{G}{\leftarrow} \rightarrow G$$
)
il identity e s.t.
Hy $m(e,g) = m(g,e) = g$
 $e \cdot g = g \cdot e = g$
2) inverses
Hy $G \in G = g \cdot s \cdot t - gg^{-} = g^{-}g = e$
3) Associativity
Hy, h, k $\in G = (g \cdot h) \cdot k = g \cdot (h \cdot k)$

E.g.
$$Sym_n := \frac{9}{7}$$
 the set of bijections
on $\frac{9}{1,2,3,...,n}$ of $\frac{9}{1,2,3,...,n}$
 $\frac{1}{1,2,3,...,n}$
 $\frac{1}{1,2,...,n}$
 $\frac{1}{1$

Note:
$$\Psi(e_G) = e_H$$
.
 $\Psi(e_G \cdot g) = \Psi(e_G) \cdot \Psi(g)$
 $\Longrightarrow \Psi(g) = \Psi(e_G) \cdot \Psi(g) \quad \forall g \in G$

$$\begin{aligned} \mathcal{L}(e_{\mathcal{G}} \cdot e_{\mathcal{G}}) &= \mathcal{L}(e_{\mathcal{G}}) \cdot \mathcal{L}(e_{\mathcal{G}}) = \mathcal{L}(e_{\mathcal{G}}) \\ & (\mathcal{L}(e_{\mathcal{G}}))^{'} \cdot \mathcal{L}(e_{\mathcal{G}}) \cdot \mathcal{L}(e_{\mathcal{G}}) = (\mathcal{L}(e_{\mathcal{G}})^{'}) \cdot \mathcal{L}(e_{\mathcal{G}}) \\ & e_{\mathcal{H}} & e_{\mathcal{H}} \\ & e_{\mathcal{H}} & e_{\mathcal{H}} \\ & e_{\mathcal{H}} & e_{\mathcal{H}} & e_{\mathcal{H}} \end{aligned}$$

•

Sinilarly,

$$\mathcal{U}(g^{-1}) = (\mathcal{U}(g))^{-1}$$

Exercise in proofs.

Nou use subap. criterion. Reminder: If ACG, Gongroup, then A = G => Ha, b EA, a 5'EA. Let x, y E l'(K). WTS that x y -1 E l'(K). $\Psi(xy') = \Psi(x) \Psi(y') = \Psi(x) \Psi(y)' \in K.$ EK EK $\Rightarrow \mathcal{C}(x_{y}^{-1}) \in \mathcal{K} \Rightarrow$ $xg^{(k)} \in \mathcal{C}(k)$ $S_{\circ}, \quad \mathcal{Q}^{\prime}(\mathbf{k}) \leq \mathbf{G}.$

Def: The kernel of a hon.
$$\ell: G \rightarrow H$$

is $\ell^{-1}(\frac{4}{3}\ell_{H}^{2})$
Def: the inner of ℓ is
 $\ell(G) := \frac{4}{3}\ell(g) \mid \frac{4}{9}\ell_{G}G\xi$.
Thus: $\ell: G \rightarrow H$ is injective
 \rightleftharpoons ker $\ell = \frac{4}{3}\ell_{G}\xi$, i.e. ker ℓ is trivial.
Pf: (ϵ) If $\ell(x) = \ell(y)$, $x \neq y$.
Then $\ell(x) \ell(y)^{-1} = \ell(x) \ell(y^{-1}) = \ell(xy^{-1}) = e_{H}$.
In particular, $xy^{-1} \neq e_{G}$ and $xy^{-1} \in ker \ell$.

^

Two groups are "monorphic" if

$$J \in G \rightarrow H$$
 an isomorphism.
. Exercise: Composition of isomorphism is an
isomorphism. $G \in G \rightarrow H$
 $i \forall 0 : G \rightarrow H$
 $i \forall 0 :$

Runk: If
$$G = \langle g \rangle = \langle g^n | n \in \mathbb{Z}_{3}^{2}$$
,
then G is called cyclic,
and any hom: $U: G \rightarrow H$ is
determined by $U(g)$.
If $G = \langle g_{1}, g_{2}, ... \rangle$
it suffice to define $U(g_{i})$ V_{i} .
. In an abelian gp , generators for
 $G = \langle g_{1}, ..., g_{n} \rangle$ before "like a basis" of per
 $V = \langle g \in G, g = \langle g_{i} = c_{i}g_{i} = c_{i}g_{i} + c_{2}g_{2} + ... + c_{n}g_{n}$.

$$\begin{pmatrix} g_1 + g_1 + \dots \end{pmatrix} + \begin{pmatrix} g_2 + g_2 + \dots \end{pmatrix} + \dots \\ & \ddots \\ C_1 & C_2 \end{pmatrix}$$

Def: For
$$G(\mathcal{P}X)$$
 and $x \in X$;
the orbit of x under G is the set
 $G_{x} := \frac{2}{9}g \times 1 \forall g \in G^{2}$
Morally: "Excepting we get by acting on x
with G
e.g. $C_{2}(\mathcal{P})$ \Box by reflection $coord \prod_{y',x'}^{x',y'}$
 $\frac{4}{1}g^{2}$ $G_{x} = \frac{2}{3} \times , x^{2} \neq X$
 $G_{y} = \frac{4}{9}g^{2}$, $G_{y'} = \frac{4}{9}g^{2}\xi$

If
$$G_X = X$$
 $\forall x \in X$, then $G \subseteq X$
is called trans: true.
Claim: $X \sim y$ iff: $G_X = G_Y$. is
a equivalence relation.
 T_i : Reflexive, Sym. Trane.
with if Xmy with if Xmy then $X \sim e$.
 $G_X = G_X$ Then $y \sim X$
 $G_X = G_X$ Then $y \sim X$
 $G_X = G_X$ Then $y \sim X$
 $G_Y = G_Y$ $G_Y = G_Y$.
 $G_Y = G_Y$ $X' = g \cdot X = g' \cdot Y$
since $G_Y = G_Z$. then $y \in G_Z$.

$$\forall g \in G$$
, let $X^{3:} = 4 \times C \times [g \times x = x]$.
 $|X/G| = \frac{1}{|G|} \underset{g \in G}{\leq} |X^{5}|$
partition of
 X by orbit

in for H = G, we consider $g \sim g'$ if g' = gth for some hett.

Coloring the cube!
3 colorer, and how many distinct colorings of
the cube?

$$|X| = 3^6$$

 $|G| = 24$. $= # of rotation?$
 $|X|^9 + 3^6$
 $|X|^2 = 3^6$, $|X|^{40^6}| = 3^3$, $|X|^{80^6}| = 3^4$

$$|\chi^{120^{\circ}}| = 3^{2}$$
, $|\chi^{180^{\circ'}}| = 3^{3}$

 $=\frac{1}{24}(\dots)$

- 57