
BMC - Advanced: Applied Algebraic Topopology  

220309 - Chris Overton (handout based on revision after class)  

The second talk on 220316 will recap and expand on these notes.

Caution: these notes are not written to be fully understandable to you on their own, 
although they will be filled in a bit from class presentation. We try to cover details in 
class, and you are encouraged to look up terms!

When you see a paragraph marked "question" (or Q), try to answer the question before 
looking past <---SPOILER ALERT---> at the answer.

The "mapper" algorithm (preview):

Applied Algebraic topology not only uses Algebraic Topology ("AlgTop"), but it uses 
it in "real world" applications, like data science.
One very active area of research is Topological Data Analysis ("TDA")

Alg Top is one of the major areas of "pure" math. You use it to map from 
topological spaces to objects you can study using modern algebra.



Understanding TDA requires not only AlgTop (itself tricky!), but then you have to connect 
this say to data science, which has its own background.

Examples of how you can understand a data set using the mapper algo:
1: Diabetes: discovering innate structure of a complex data set

2: Cancer: discovered geometric structure may link with causal characteristics - here 
mutated genes

Our plan for day 1:



Our plan for day 1:  

Introduction to the mapper algo, and how it linked seemingly pure AlgTop with 
not just real world applications, but interesting Silicon Valley startup history

Gaining some respect & intuition for high-dimensional spaces - how can you 
even build them?

Stepping back a bit to introduce necessary math ideas:

Topology and AlgTop (we won't have much time for Alg): 
   3 views of continuity
   Homotopy
   First view of AlgTop: homology
   Manifolds, a bit of geometry

How TDA brings topology/geometry together with data science:
Clustering, "dimension reduction"
How can you do topology on a set of points?
   Nerves

Plan for week 2:  

A more careful review of homology
More TDA examples, tools, and techniques:
e.g. persistent homology
More credible "computations"

 

 

 

 

 



The mapper algorithm  

Goal: you have a cloud of points (maybe in high dimensional space) that you'd like to 
understand. Try to capture its structure in a graph (or simplicial complex)

Steps:

1. One or more "lenses": projection into low-dimensional space (e.g. a line)
2. "Cover" the image with overlapping intervals (or higher-dimensional sets)
3. Take preimages of sets from the cover; find "connected components" of these 

(really: cluster.) These make up vertices of your new graph
4. You have the underlying original points that end up in the clusters. If clusters in 

adjacent preimages share points, connect them (creating edges, maybe higher-
dimensional objects)

5. If you have made good choices for lenses, cover, and clustering, the resulting 
graph will capture important structure!

Historical context:

'07 paper by Singh, Mémoli & Carlsson
Topological/geometric analogue of "map reduce" - a very important algorithm in 
CS & technology
Went from thesis project to company with >$100M funding (Ayasdi)
That was later bought out privately and is now more quiescent
Meanwhile, TDA has caught on as an appealing research area in math

Gaining some respect & intuition for high-dimensional spaces - how



Gaining some respect & intuition for high-dimensional spaces - how
can you even build them?

 

Some possible building blocks:

Hypercubes 

How many corners does an n-cube have?
n-dimensional balls  with boundary  (a sphere)

Simplexes (or simplices)  - "hyperpyramids":

How many k-faces does an n-simplex have?

Questions to consider:

Q1) Prove that each of  has a volume with formula , where r is 
a "radius" and c is different for each of these three kinds of shapes (and for each 
dimensionality n.)

Note: if r is not given, it is assumed to be 1, indicating shapes with unit edge length in 
each direction (or radius 1 for balls.)
(Sometimes the n are written as superscripts instead of subscripts.)

Q2) Which of the following statements are true? Do they contradict each other?

Given a choice of , as n becomes large, "almost all" of the volume of  is 
in the slice of width  closest to the equator.
Given a choice of , as n becomes large, "almost all" of the volume of  is 
in the outer "peel" of thickness  near the boundary.

 



<---- SPOILER ALERT---->

Answer 1) This is actually quite easy: calculate a given answer for r=1, then scale by a 
factor of r in each of n dimensions (geometric similarity.)

Answer 2) Surprisingly, both seemingly contradictory statements are true.

To prove the first, use Pythagoras' theorem to note that each slice  of say  total slices 
parallel to the "equatorial hyperplane" other than the central one has maximum radius 

. Using the similarity result from Q1, this shrinks volume by at least the power 
 (for all the n-2 other dimensions.) When n is sufficiently large, this gets smaller 

than any specified , so you can make the total volume of the M-1 non-central slices 
as relatively small as you want.

The second statement follows more directly from similarity (Q1.)

When you combine Q1 and Q2, it follows that as n gets sufficiently large, "almost all" the 
volume is concentrated on the "peel" of the central slice!

You saw that cubes have more complicated boundaries. So simplexes are easier to build 
spaces out of:

We just insist that simplices of the same dimension that overlap have to overlap in a 
common face-simplex. This is violated above on the right, where the vertex in the middle 
of the edge of the 3-simplex is not a vertex of the the 3-simplex.

 

Topology: some fundamental concepts



Topology: some fundamental concepts  

Continuous maps f: three views, the third leading to a "topology":  

Can you draw a graph of f without lifting up your pen?
(Applies only to maps from 1-d to 1-d)

 definition: by holding your "gun" within  precision, you can hit a "target" 
of radius 
(Applies only to metric spaces: spaces with distances)
Topological: inverse  of an open set  is open

A topology of a space  is nothing more than a specified set of "open" subsets :

Including 
Closed under arbitrary unions
Closed under finite intersections

Examples of topologies on the real unit interval :

: The "trivial topology": only  and  are open
: The "usual" topology - how could you define this?

: The "discrete" topology: every subset is open

Question 3: given identity maps, which of the following are continuous?

<---- SPOILER ALERT---->

Answer 3) The 2nd and 3rd are continuous, because any open set in the image has a pre-
image (in this case the same set of points) that is open.



Remember: maps tend to be continuous if they do not "break apart" open sets.
The important thing to understand is that topological continuity depends on pre-images 
of the map: going backwards from the direction of the map!

What maps are allowed?
Acceptable maps must respect the structure of the topological spaces considered. In most 
cases, one would want them to be continuous. But if one is working with a differentiable 
*category, the maps would also have to be differentiable.

*Note: we won't have much time to talk about categories, but they are very generally 
useful things that are basically like sets (objects) between any of two which there exist a 
set of morphisms (like maps) between them. Plus there are unique identity maps from an 
object to itself, and morphisms are associative.

You can also map from one category to another in a way that commutes with the objects 
and morphisms. This is called a functor. AlgTop studies functors from categories with 
topological objects to categories with algebraic objects.

Some important definitions in topology for a topological space X: 

An open cover of X is a set of open sets  whose union contains X
X is compact if every open cover has a finite sub-cover
A deep and important concept (another math circle topic I did!)

(Topological) Spaces considered equivalent:

A consequence of the usual topology on manifolds: you can stretch spaces, but 
you can't puncture them or cut them.

When are two spaces considered equivalent? Two possibilities:

Only if homeomorphic, i.e. if there is a bijection (1-1 and onto, so an 
invertable map) between the spaces that is continuous in each direction
If homotopic, namely if you have maps going both ways whose 
compositions are homotopic to identities

Q4 Example: P and O (ignoring serifs!) are homotopic, but not homeomorphic. Why?



<---- SPOILER ALERT---->

One proof is that by removing one point of P, you can turn it into two (topologically 
separate) pieces. Any homeomorphism between P and Q would force such a separation of 
"P minus a point" to map onto a disconnected "Q minus a point", which is not possible.

Manifolds  

Definition: an n-dimensional manifold is a topological space in which each point x has 
an open "neighborhood"  homeomorphic to the interior of  via a map . 
The  are called charts.
Also: if the images of two such charts  and  overlap, the sequence 

 has to be smooth (i.e. it has to have a specified number of 

continuous derivatives.) 

This lets you think of a complicated space just in terms of its charts, which are defined on 
subset of Euclidean space.

Similarly, the maps you allow between manifolds are only those that result in smooth 
maps between neighborhoods in chart.

Intro to AlgTop  

There are surprisingly few Alg Top texts aimed at undergrads - most are for graduate 
students, maybe allowing in some "advanced undergraduates."

Why? Because you first need to know some things about 1) Algebra, 2) Topology, and then 
you combine these in new ways.

We have skimped on both (particularly on Algebra), and will also introduce AlgTop only 
very briefly. 

 



What do you wish you knew?

One example might be: what are all the different possible connected spaces, and all the 
allowed maps between them (continuous or smooth, depending on which is your chosen 
category.)

There are way too many such spaces and maps, so instead, you consider smaller sets, such 
as homotopy equivalence classes of spaces

But even just homotopy types of spaces (and maps) are way too hard to compute. For 
example, we only know a very small portion of all the sets of homotopy classes of maps 
between spheres .

So a much more workable thing is homology:

Homology: (graded) groups formed e.g. by "chains" of simplexes of
which X is composed

 

There are a couple ways to set up homology, ranging from the most concrete (build X out 
of simplexes) to definitions that are more abstract but more convenient.

Suppose X is itself a 'simplicial complex', namely composed of points, line segments, 
triangles, tetrahedra, hyper-tetrahedra, ... (respectively in dimensions 0,1, 2, 3, 4). An n-
simplix is given by its n+1 vertices as . You can take 'chains' of these, 
which are sums of multiples of n-simplexes, forming the module .



Then there is a boundary operator , defined on a simplex as:

,
namely the sum of alternately +1 and -1 times faces of the original simplex formed by 
leaving out the i-th vertex

The boundary operator satisfies , so that boundary times boundary is 
zero: . (Note composition goes from right to left, in this case from 

)

Therefore, for each n, you can form the quotient homology class 

A good choice for the boundary operator is the natural geometric boundary as calculated 
for each simplex. For example,  of a 2-simplex (a triangle (a,b,c)) is a set of three 1-
simplexes (line segments) 
Similarly, 0-simplexes are points (like , which is a point named "a", not a numeric 
value!), and a 1-simplex is an "edge"  with boundary as follows:

Careful: you have to pay attention to sign!

Question 5: show that  in this case (where n=1).
[Hint: the argument varies depending on n:  is defined on an n-simplex.]

<---- SPOILER ALERT---->

 



In 'singular' homology you don't think of X as itself being made of simplexes, but rather 
you consider chains as composed of images of 'standard' n-dimensional hyper-tetrahedra 
mapped into X. This seems like a huge space, but when you take kernel 'divided' out by 
image, under reasonable circumstances, you get the same result. Advantages: this 
definition provides useful topological intuition, and you don't have to build X up as a 
simplicial complex.

If X is an n-dimensional manifold, you can think of k-dimensional submanifolds.

[Instead of integer multiples (our default!), you could use another 'ring of coefficients' like 
 or even  to count multiples of simplices.]

--> Example from class: homology of , , used to demonstrate Brower's fixed-point 
theorem.

(We'll develop this more carefully in the second lecture.)

Topological data analysis  

So what does any of this have to do with TDA?

Answer: you can make simplicial complexes out of point spaces.

One way: given a set of points, take balls of a fixed radius around them. This gives you a 
topological space, which can be studied using AlgTop:

 

In this case, these balls are large enough to connect all the points, but they are also large 
enough to fill out (and thus obscure) the apparent lower ring formed by the points.



Another way to construct a topological space from a cover  of a topological space X: 
the nerve (called the Cech complex):
Create an n-simplex for any set of n of the  that intersect

In this example, each  represents the area on the concave side of the curve's dotted line 
(with  the interior of the circular region.) Note that .
(Diagram corrected from Chazal & Michel.)

This can be a suprisingly faithful transformation of a space X from which a point cloud 
has been sampled. (But note the point cloud itself has a boring discrete topology.)

The Nerve Theorem: If  is an open cover of X such that any nonempty intersection 
of subsets of  is contractible. Then X and the nerve from this cover are homotopy 
equivalent.

Lesson: by covering a set of points with open sets, you can do rigorous homology on the 
resulting topological space. 
(The point set itself has the boring discrete topology.)

Mapper is one way to approach this, but it is useful as an exploratory tool only. It depends 
on choices of the cover and lenses, and is not guaranteed to pick up particular features. 

 



Another mapper example: studying a point cloud sampled from the surface of a hand:

Question 6: What useful structure of the hand is captured and lost by the resulting graph

<---- SPOILER ALERT---->

Captured: linear extensions ("flares") of fingers: these features are geometric, 
not topological
Lost: the surface topology of the hand. Capturing this would likely take multiple 
lenses, and thus a much more computationally expensive setup.

 

Conclusion



Conclusion  

You have seen a surprising connection between topology, algebraic topology, and data 
science.

This has helped grow the new subject of Topological Data Analysis, which continues to 
develop rapidly.

There is now a bit more science beyond this one technique, as we will explore more next 
week.

References  

A short overview with several pretty pictures, useful terms, and sample Python 
code you can run:
https://www.quantmetry.com/blog/topological-data-analysis-with-mapper/
From Frederic Chazal and Bertrand Michel:
Slides from '16: https://hal.inria.fr/hal-01614384/file/Mapper.pdf 
A more advanced paper - most recently from '21: https://www.frontiersin.org/art
icles/10.3389/frai.2021.667963/full
Elementary Applied Topology ("EAT"), by Robert Ghrist (freely available at https:
//www2.math.upenn.edu/~ghrist/notes.html)
A groundbreaking TDA text aimed at researchers - so not that "elementary"!) It 
discusses many interesting topics, but incompletely.

AlgTop texts:  

Greenberg & Harper
Massey
Munkres (friendly introduction)

There is also a good modern introduction to AlgTop by Burt Totaro of UCLA in The 
Princeton Companion to Mathematics (The only of his many papers I can't find online.)

https://www.quantmetry.com/blog/topological-data-analysis-with-mapper/
https://hal.inria.fr/hal-01614384/file/Mapper.pdf
https://www.frontiersin.org/articles/10.3389/frai.2021.667963/full
https://www2.math.upenn.edu/~ghrist/notes.html
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