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https://www.geogebra.org/m/yqczqvxy
The original and most popular version of this 
puzzle is the so-called 15-puzzle, made of 16 
squares arranged in a 4x4 table and labeled 
1-15. One square is empty and you can use it 
to try to arrange the puzzle in order. However, 
which mixed arrangements are possible to 
solve and which are not? In other words, if you 
take the puzzle apart and randomly put it back 
together, what is the chance that it will be 
solvable?  

While the chances here will be fairly high: 
50-50, you will not be so lucky with the 
Rubic's cube: only 1 in 12 randomly 
assembled versions will be solvable. Yet the 
explanation for the 15-puzzle and the Rubic's 
cube are of the same flavor and use deep 
ideas from Group Theory: a must to explore 
by any game fan and math aficionado.

In this talk, we will concentrate on demystifying the 15-puzzle, 
both in practice and in theory, and learn to immediately catch 
if anyone has cheated (by taking it apart and putting it back 
together) and has given us a "defective" puzzle! If you would 
like to get a head-start, try various puzzle sizes at 




To the rescue comes the bottom left corner, 
which is empty and you can slide adjacent 
squares into the empty slot in trying to arrange 
the puzzle. If you are successful, the puzzle will 
fill in the empty square, giving the full picture:

You see below a 3x3 image of Cindy Lawrence, 
our host, made of 9 squares. But something's 
wrong! Two squares in the rightmost column are 
flip-flopped! Can we correct this and see the full 
picture of Cindy? 


https://www.jaapsch.net/puzzles/javascript/fifteenj.htm

by Jaap Scherphuis



Session 5

Introduction to Group Theory

based on Tatiana Shubin’s session

Sneak Preview. Having played with Rubik’s cube and taken it apart to see what
is inside, it is now time to look under the hood and penetrate more deeply into
what its true structure is. The building blocks are groups. Stubborn polynomials,
symmetric elephants, and socks that beg to be put on, taken off, and permuted
between your feet are all part of the story, directed by Galois. You will escape
never-ending cycles in a complex world, only to stroll along in Permuterland and,
ultimately, seek bi-polar paths in 15-Puzzleland.

1. Puzzling It Out

The well-known 15 -puzzle consists of a shallow box filled with 16 squares
in a 4 × 4 array. The bottom right corner square is removed, and the other
squares are labeled 1 through 15 as in Figure 1a. Using the empty spot, we
can slide the squares around without lifting them up.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

4 3 2 1

5 6 7 8

12 11 10 9

13 14 15

10 9 8 7

11 2 1 6

12 3 4 5

13 14 15

8 14 11 3

12 2 15 9

6 4 13 1

7 10 5

Figure 1. Achievable or not?

Problem 1 (McCoy [53]). Starting from the initial position in Figure 1a,
which 15 -puzzle positions in Figures 1b–d can be achieved and why?

Understandably, a novice may ask: “What does this puzzle have to do
with serious mathematics?” “Ah,. . . wrong question!” an advanced math cir-
cler will say. “Just about any interesting (or uninteresting) puzzle is somehow
related to mathematics.” The puzzle is frequently a disguise for an actual
problem from group theory. In fact, by the end of this session you will have
seen such a variety of examples of groups, that (whether you wanted to or
not) you will start seeing groups everywhere around you!
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8. HINTS AND SOLUTIONS TO SELECTED PROBLEMS 127

A B

C

C A

B

C B

A

A B

C

r1 s1 =
s3

s1r1

A B

C

B A

C

B C

A

A B

C

s2 s1 =
r2

s1s2

Figure 7. In S(∆) = D3: s1r1 = s3 and s1s2 = r2

a more general argument is usually much faster and more elegant. In our
situation with S(∆): think about why the composition of two symmetries of
∆ is again a symmetry of ∆, and why a symmetry always has a counteraction,
i.e., a “reverse” symmetry that undoes it. For example, the counteraction of
r1 is r2, and of s1 is s1 itself. ♦

· i

i i

· i s

i i s
s s i

· i r1 r2 s1 s2 s3
i i r1 r2 s1 s2 s3
r1 r1 r2 i s2 s3 s1
r2 r2 i r1 s3 s1 s2
s1 s1 s3 s2 i r2 r1
s2 s2 s1 s3 r1 i r2
s3 s3 s2 s1 r2 r1 i

Figure 8. Tables for symmetry groups S(E1), S(E2), and S(∆)

If you are still unsure which “symmetries” of our figures we are allowed
to consider in this session, check out the footnote on page 107: the allowable
symmetries are called Euclidean motions. These are motions (bijections) of
the plane that preserve distances, also known as rigid motions or isometries:
imagine your figure made of cardboard and you want to transform the figurei
onto itself without bending, twisting, pinching, or doing other horrible stuff
to the cardboard. Thus, a symmetry of a plane figure is not just any bijection
of the figure onto itself: it is a rigid motion. For example, switching the
vertices A and B of a square ABCD while leaving the other two vertices C
and D fixed is not part of a symmetry of the square (why?). Be aware that
in some sources “rigid” motions exclude orientation-changing motions likei
reflections (a reflection changes a clockwise orientation ABCD of the square
to a counterclockwise orientation of the vertices, i.e., ADCB). However, we
will consider reflections as part of our symmetry groups in this session.

Finally, a reflection across a line combined with a translation along this
line is what is called a glide reflection. For any plane figure, its symmetryi
group will be generated by and will consist of the four types of plane trans-
formations mentioned in the text: rotations, reflections, translations, and
glide reflections. This is a fact that needs a proof, and we leave it to the
more experienced reader to provide such a proof.

Exercise 4. For n ≥ 3, Dn has 2n elements: n rotations and n reflections.
The pattern breaks for n = 1 and n = 2. Of course, we may never think




































































































































8. HINTS AND SOLUTIONS TO SELECTED PROBLEMS 129

Problem 4. If we add a reflectional symmetry s to R4 (i.e., s is a reflection
across one of the two diagonals or across one of the two midsegments of the
square), then the products r0s, r1s, r2s, r3s must also be in our subgroup
of D4. These products are obviously 4 different symmetries: all first apply
s to the square, but then each continues with a different rotation rj of the
square. In addition, each reflection of the square switches the labeling of the
vertices of the square from clockwise to counterclockwise orientation (check
it!); yet any rotation of the square preserves the orientation of this labeling
(check it!). Hence, each product rjs first changes the orientation of the
labeling (via s) and then preserves this new orientation (via rj); so overall,
rjs changes the orientation of the vertices’ labeling and, thus, must be one
of the reflections of the square (cf. Fig. 10a).

· r0 r1 r2 r3 s1 s2 s3 s4

· r0 r1 r2 r3 s1 s2 s3 s4

r0
r1 R4:
r2 rotations

reflections

r3

s1
s2
s3

reflections rotations

s4

· r0 r1 r2 r3 s1 s2 s3 s4

r0 r0 r1 r2 r3 s1 s2 s3 s4
r1 r1 r2 r3 r0
r2 r2 r3 r0 r1 s2 s1 s4 s3
r3 r3 r0 r1 r2

s1 s1 s2 r0 r2
s2 s2 s1 r2 r0
s3 s3 s4 r0 r2
s4 s4 s3 r2 r0

Figure 10. Rotations vs. reflections in D4

Therefore, r0s, r1s, r2s, and r3s are the four distinct reflections of the
square, and our subgroup R4 ∪ {r0s, r1s, r2s, r3s} of D4 has expanded to
include all 8 elements of D4. To paraphrase, there is no subgroup of D4

strictly between the rotational subgroup R4 and D4 itself. "

It is clear that {r0} (called the trivial or the identity subgroup) is the
only subgroup of D4 of size 1; and that the subgroups of size 2 consist of
the identity r0 plus a self-counteracting symmetry, i.e., these are {r0, r2}
and {r0, sj} for any reflection sj. The previous argument shows that once a
subgroup K contains r1 and some reflection sj, then K contains everything,
i.e., K = D4. A similar argument can be applied to r3 and any reflection
sj, since r3 generates the rotational subgroup R4, just as r1 does. Thus, the
rotations in any other subgroup of D4 are at most r2 and r0 (of course).

Now, if you complete the full multiplication table for D4, you will notice
that r2 is a very special element: it commutes with everything in D4, i.e.,
r2x = xr2 for all x ∈ D4 (cf. Fig. 10b). In particular, if a subgroup K
contains r2 and some reflection sj, then r2sj = sjr2 = sk for some other
reflection sk. Since r22 = s2k = s2j = r0, the identity, with some more work, one
can manipulate the above equalities to also obtain that r2sk = skr2 = sj and
sjsk = sksj = r2. In other words, {r0, r2, sj, sk} already forms a subgroup
of D4 of order 4. There are two such subgroups of D4; the pairs {sj, sk}
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Action Groups (Lecture)

Worksheet 3: Cycles, Transpositions, Even and Odd Permutations1

Date: 11/18/2020

MATH 74: Transition to Upper-Division Mathematics

with Professor Zvezdelina Stankova, UC Berkeley

Read: Session 5: Introduction to Group Theory. (vol. II)
• §4. General Groups. (pp. 110-111)
• §5. Some More Examples of Groups. (pp. 112-115)
• §6. Permutation (or Symmetric) Groups. (pp. 116-121)

Write: clearly. Supply your reasoning in words and/or symbols. Show calculations and relevant pictures.

1. (Famous Groups) Show that the sets below are
groups under the given operation. (S⇤ = S � {0})
(a) (Z,+); (b) (R,+); (c) (R⇤

, ·); (d) (C⇤
, ·);

(e) (Zn,+) = {0, 1, 2, . . . , n� 1}, +(modn);
Which are cyclic? With how many generators?*

2. (Roots of Unity) Let Cn be the set of solutions
to the equation z

n = 1 in complex numbers.
(a) Prove that Cn is a group under complex mul-

tiplication, and hence a subgroup of (C⇤
, ·).

(b) What is the order of Cn? (Hint : Why doesn’t

z
n � 1 = 0 have repetitive roots? Write all roots.)

(c) Show that Cn is cyclic, generated by the prim-
itive nth root of unity ⇣n = cos 2⇡

n + i sin 2⇡
n .

3. (2-Row Notation) Perform the given operations:

(a) ⇡⇢ and ⇢⇡ where ⇡ =
1 2 3

3 1 2
, ⇢ =

1 2 3

3 2 1
;

(b)
1 2 3 4 5 6 7

3 4 5 1 2 6 7

1 2 3 4 5 6 7

7 6 2 4 1 3 5
;

(c)
1 2 3 4 5 6

2 3 4 6 1 5

�1

,
1 2 3 4 5 6 7 8

1 4 8 5 7 6 2 3

3

;

(d)
1 2 3 4 5 6 7 8 9 10 11 12

10 2 9 8 12 3 4 1 11 5 7 6

�2

.

4. (1-Row Cycle Notation) Calculate (1342)(123)
and (1534269)�1. (Hint : Apply from right to left!)

5. (Cyclic Properties) Prove that every permuta-
tion can be written as a product of:
(a) disjoint cycles (i.e., w/ no common elements);

• The order of the product of disjoint cycles
is the lcm of the lengths of these cycles.

(b) transpositions ; i.e., (a1b1)(a2b2) · · · (akbn).
6. (Even-Odd Balance) For n � 2, prove that the

function ⇠ sending any even permutation ↵ to the
product ↵ � (12) is a 1-1 correspondence between
the set En of even and the set On of odd permu-
tations in Sn. How many odd permutations are
there in S5? Why? (Hint : Prove that ⇠(↵) is indeed

odd and that ⇠ : En ! On is 1-1 and onto.)

7. (Roots Shake-&-Bake) For which parameters a
does ax2 + 2(a� 1)x+ 1 = 0 have only one root?
(Hint : ax2 +2b1x+ c = 0 likes the shortcut quadratic

formula r =
�b1±

p
b21�ac

a . But there is another catch!)

Key Group Takeaways:

• (Groups) To show that a set S 6= ; is a group
under an operation ⇤ that sends (s1, s2) 7!
s1 ⇤ s2 2 S for any s1, s2 2 S, verify the defini-
tion of a group; i.e., for all s, s1, s2, s3 2 S:
(1) ⇤ is associative: s1⇤(s2⇤s3) = (s1⇤s2)⇤s3;
(2) an identity element e 2 S: e⇤s = s⇤e = s;
(3) an inverse s

�1 2 S: s ⇤ s�1 = s
�1 ⇤ s = e;

Or find a known group G under the same ⇤
that contains S, and show that S is a subgroup:
(5) S is closed under ⇤: s1 ⇤s2 2 S 8s1, s2 2 S;
(6) S is contains the inverses: s�1 2 S 8s 2 S.

• Permutations can be written in 2-row and in
cycle (1-row) notation, as product of disjoint
cycles, and as a product of transpositions.

• An even permutation is one that can be writ-
ten as the product of an even number of trans-
positions, and analogously for odd permuta-
tions. No permutation is both even and odd.

• The order of an element g 2 G is the min
n 2 N such that gn = eG, the identity in G.

• Cycles are permutations (a1a2 . . . ak). The or-
der of the cycle is its length k.

1
These worksheets are copyrighted and provided for the personal use of Fall 2020 MATH 74 students only.They may not be

reproduced or posted anywhere without explicit written permission from Prof. Zvezdelina Stankova.
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paging
ActionGroups Cycles Transpositions

0.9 Permutations as Actions P

a Set up A 11,2 3 setof3elements
3

I 2

g
thesetofall 6 3 Think as actions on 12,3
permutationsofA

intothafiwon iz Een donothing action p
result

transpositions transpositions
123 T z 1 2 1 2 34 1 2 34
21 3 21 34 1324
1 23 Tzz 2 3 1 2 34 1 2 34
132 1243 32 14
1 23 Taste 3 12 34 1 2 34321

4231 1432
123 9 1 Conclusion
312 2 3 cycles P
123 I 2 6 transpositions

IT r c of4 elements231 3






































































































































I 2

3 cycles a 4 cycles i I
2

4 3

it iwi 3 42.34 int 334

ii 34 iwiiz34 iz.igiwii.is
1422,343in 12344 Qittowtocountfast

32
Aifixwherelgoes

12,34 innit 33442 exganse c 3

Conclusion Conclusion

83 cyclesof4 elements 64 cyclesof4 elements

Countsofarfor4elm's

transp Ifyclestatydestidetntityt total

Q whathave is 2 i 2 i 2
A A T 7

wemissed v v as
4 3 4 3 4 3

Tennis 1234 1234 1234
doubles 2143 4321 3412






































































































































Summary 54 permutationsof 4 elements

transpositions e identity 1b
2 cycles K 6

a b
z cycles

14312
1 v

a f c 4.2 8
v 4 cycles 31 6 ac b pairings 3de c Cc d tennisdoubles

Ex Describe in Ss 12345 re

12345
1 2 34152 g v

3

t s 3 4
34512 5 v a b C d se

z
4 3 2 1 4

1 a

Afb se die 2
1 3 5 c L

CH 4 4
s

w
e E 4

24
z disjointcycles

super HW Break 5515 120perm's into subsets

accordingto theircyclicstructure

Ex Described ClaYsify Count

1234567 12345678 12345678
7641352 14365872 34617852

I 7 2 6 122 4 52 I 3 6
i 7 cycle v T 46 cycle 52 7
4h 3 5 8 6 t

4 2 transp






































































































































2 Composing permutations and inverses

123 123
f T23 E S3f 0Th z y 2 213

2nd pst

12345 12345 12345 ES
34512 54321 21543

Ime 3 i 3 3T23
EgT23

I
12345 12345
34512 45123

55

EX 1234567 1234567 1234567
3451267 7624135 7641352

12345678 12345678 12345678
14365872 32415678 34615872

Cyclic S cycle 03 cycle 03 cycle 7 cycle
structure 4 cycle 03 cycle 6 cycle

Digsjgienst
I 3 is 2 NonDisjoint 1 6 is 2

4 6 17 cycles 4 6 s't
t t






































































































































31 RowCycleNotation

12733 42 112 12345
5 cycle

fixtelse 34512 113524

123 1231 1231 12345
Disjointcycles

231 34152
1311245

Ex Writeasdigointcycles
1234567 1234567 1234567
3451267 7624135 7641352

13524116117 175 2631 4 1726534

Conversely

24681 341 12345678 12345678
a 14365872 32415678

12345678
directly

Non disjoint 34 g g g y
136824 15117

cycles disjointcycles
3.5 Backto S permutationsof 4 elements

transpositions e identity 1ab
2 cycles

111 6
abc 3 cycles

14312

4.2 8
abcd 4 cycles 31 6

abyad pairings 3tennisdoubles




