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You see below a 3x3 image of Cindy Lawrence, To the rescue comes the bottom left corner,
our host, made of 9 squares. But something's  which is empty and you can slide adjacent
wrong! Two squares in the rightmost column are squares into the empty slot in trying to arrange
flip-flopped! Can we correct this and see the full the puzzle. If you are successful, the puzzle will
picture of Cindy? fill in the empty square, giving the full picture:
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https://www.geogebra.org/m/yqczqvxy

The original and most popular version of this While the chances here will be fairly high:
puzzle is the so-called 15-puzzle, made of 16 50-50, you will not be so lucky with the
squares arranged in a 4x4 table and labeled Rubic's cube: only 1 in 12 randomly

1-15. One square is empty and you can use it assembled versions will be solvable. Yet the
to try to arrange the puzzle in order. However, explanation for the 15-puzzle and the Rubic's
which mixed arrangements are possible to cube are of the same flavor and use deep
solve and which are not? In other words, if you ideas from Group Theory: a must to explore
take the puzzle apart and randomly put it back by any game fan and math aficionado.
together, what is the chance that it will be

solvable?

In this talk, we will concentrate on demystifying the 15-puzzle,
both in practice and in theory, and learn to immediately catch
if anyone has cheated (by taking it apart and putting it back
together) and has given us a "defective" puzzle! If you would
like to get a head-start, try various puzzle sizes at

https://www.jaapsch.net/puzzles/javascript/fifteenj.htm
by Jaap Scherphuis
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SNEAK PREVIEW. Having played with Rubik’s cube and taken it apart to see what
is inside, it is now time to look under the hood and penetrate more deeply into
what its true structure is. The building blocks are groups. Stubborn polynomials,
symmetric elephants, and socks that beg to be put on, taken off, and permuted
between your feet are all part of the story, directed by Galois. You will escape
never-ending cycles in a complex world, only to stroll along in Permuterland and,
ultimately, seek bi-polar paths in 15-Puzzleland.

1. Puzzling It Out

"

The well-known 15 -puzzle consists of a shallow box filled with 16 squares
in a 4 x 4 array. The bottom right corner square is removed, and the other
squares are labeled 1 through 15 as in Figure la. Using the empty spot, we
can slide the squares around without lifting them up.
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FIGURE 1. Achievable or not?

Problem 1 (McCoy [53]). Starting from the initial position in Figure 1a,
which 15-puzzle positions in Figures 1b—d can be achieved and why?

Understandably, a novice may ask: “What does this puzzle have to do
with serious mathematics?” “Ah,... wrong question!” an advanced math cir-
cler will say. “Just about any interesting (or uninteresting) puzzle is somehow
related to mathematics.” The puzzle is frequently a disguise for an actual
problem from group theory. In fact, by the end of this session you will have
seen such a variety of examples of groups, that (whether you wanted to or
not) you will start seeing groups everywhere around you!
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8. HINTS AND SOLUTIONS TO SELECTED PROBLEMS 127
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FIGURE 7. In S(A) = D3: s1r; = s3 and s152 = 1o

a more general argument is usually much faster and more elegant. In our
situation with S(A): think about why the composition of two symmetries of
A is again a symmetry of A, and why a symmetry always has a counteraction,
i.e., a “reverse” symmetry that undoes it. For example, the counteraction of
r1 is 79, and of s is s7 itself. O
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FIGURE 8. Tables for symmetry groups S(&1), S(&2), and S(A)
L ]

If you are still unsure which “symmetries” of our figures we are allowed
to consider in this session, check out the footnote on page 107: the allowable
symmetries are called Fuclidean motions. These are motions (bijections) of
the plane that preserve distances, also known as rigid motions or isometries:

% imagine your figure made of cardboard and you want to transform the figure
onto itself without bending, twisting, pinching, or doing other horrible stuff
to the cardboard. Thus, a symmetry of a plane figure is not just any bijection
of the figure onto itself: it is a rigid motion. For example, switching the
vertices A and B of a square ABCD while leaving the other two vertices C'
and D fixed is not part of a symmetry of the square (why?). Be aware that

%’in some sources ‘rigid” motions exclude orientation-changing motions like
reflections (a reflection changes a clockwise orientation ABC'D of the square
to a counterclockwise orientation of the vertices, i.e., ADCB). However, we
will consider reflections as part of our symmetry groups in this session.

Finally, a reflection across a line combined with a translation along this
$line is what is called a glide reflection. For any plane figure, its symmetry
group will be generated by and will consist of the four types of plane trans-
formations mentioned in the text: rotations, reflections, translations, and
glide reflections. This is a fact that needs a proof, and we leave it to the
more experienced reader to provide such a proof.

Exercise 4. For n > 3, D,, has 2n elements: n rotations and n reflections.
‘I'he pattern breaks tor n = 1 and n = 2. U1 course, we may never think
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8. HINTS AND SOLUTIONS TO SELECTED PROBLEMS 129

Problem 4. If we add a reflectional symmetry s to Ry (i.e., s is a reflection
across one of the two diagonals or across one of the two midsegments of the
square), then the products rgs, r1s, res, r3s must also be in our subgroup
of D4. These products are obviously 4 different symmetries: all first apply
s to the square, but then each continues with a different rotation r; of the
square. In addition, each reflection of the square switches the labeling of the
vertices of the square from clockwise to counterclockwise orientation (check
it!); yet any rotation of the square preserves the orientation of this labeling
(check it!). Hence, each product rjs first changes the orientation of the
labeling (via s) and then preserves this new orientation (via r;); so overall,
rjs changes the orientation of the vertices’ labeling and, thus, must be one
of the reflections of the square (cf. Fig. 10a).
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F1GURE 10. Rotations vs. reflections in Dy

Therefore, rgs,r18,728, and r3s are the four distinct reflections of the
square, and our subgroup Ry U {ros,r1s,728,735} of Dy has expanded to
include all 8 elements of D4y. To paraphrase, there is no subgroup of Dy
strictly between the rotational subgroup R4 and Dy itself. U

It is clear that {ro} (called the trivial or the identity subgroup) is the
only subgroup of Dy of size 1; and that the subgroups of size 2 consist of
the identity r¢ plus a self-counteracting symmetry, i.e., these are {rg,rs}
and {rg, s;} for any reflection s;. The previous argument shows that once a
subgroup K contains 71 and some reflection s;, then K contains everything,
ie., K = Dy. A similar argument can be applied to r3 and any reflection
sj, since 13 generates the rotational subgroup Ry, just as r; does. Thus, the
rotations in any other subgroup of Dy are at most 79 and rg (of course).

Now, if you complete the full multiplication table for Dy, you will notice
that 9 is a very special element: it commutes with everything in Dy, i.e.,
rox = xry for all x € Dy (cf. Fig. 10b). In particular, if a subgroup K
contains ry and some reflection s;, then rgs; = s;ry = s; for some other
reflection sj. Since 73 = s% = s? = rg, the identity, with some more work, one
can manipulate the above equalities to also obtain that ros;, = sire = s; and
$jSp = sks; = ro. In other words, {rg,r2,s;, si} already forms a subgroup
of Dy of order 4. There are two such subgroups of Dy; the pairs {s;, s;}



ThPlan o iy solumaweaond'

B /7
. 13- pmle =3 nﬁ;ﬁl;ﬁ'li States
dpsed pocths

A0S achon group

$und L theorems:
_neven vs odc]

Pormutation” permutations

Gmups —s produchs of
fransposlhows

1r‘ou) 4 -ToW Uddﬁc)

notation  notati

.

Groups — examP\es

action groups

mjcro Ghls aP Theory
definition @%ﬂmf jor



U

P
HW

Action Groups (Lecture)
Worksheet 3: Cycles, Transpositions, Even and Odd Permutations!'
Date: 11/18,/2020

MATH 74: Transition to Upper-Division Mathematics
with Professor Zvezdelina Stankova, UC Berkeley

Read: Session 5: Introduction to Group Theory. (vol. II)

e 84. General Groups. (pp. 110-111)

e §5. Some More Examples of Groups. (pp. 112-115)
e §6. Permutation (or Symmetric) Groups. (pp. 116-121)

Write: clearly. Supply your reasoning in words and/or symbols. Show calculations and relevant pictures.

1.

(Famous Groups) Show that the sets below are
groups under the given operation. (S* =5 —{0})
(a) (Z,+); (b) (R,+); (c) (R*,-); (d) (C*,-);
(€) (Zn,+)=1{0,1,2,...,n— 1}, +(modn);
Which are cyclic? With how many generators?*
(Roots of Unity) Let C,, be the set of solutions
to the equation z” = 1 in complex numbers.
(a) Prove that C, is a group under complex mul-
tiplication, and hence a subgroup of (C*,-).
(b) What is the order of C,,? (Hint: Why doesn’t
2™ —1 = 0 have repetitive roots? Write all roots.)
(¢) Show that C, is cyclic, generated by the prim-
itive nth root of unity ¢, = cos 2* 4 isin 2T,

(2-Row Notation) Perform the given operations:

123 123
(a) 7rpandp7rwhere7r—(312),,0—(321),
() <1234567><1234567).
3451267/ \7624135)’
3

© <123456)1 <12345678>
234615/ "\14857623)°

\ @ (1 2345678 9 101112)_2
1029812341115 7 6/ °

1-Row Cycle Notation) Calculate (1342)(123)
and (1534269) 1. (Hint: Apply from right to left!)

@Cyclic Properties) Prove that every permuta-

tion can be written as a product of:
(a) disjoint cycles (i.e., w/ no common elements);
e The order of the product of disjoint cycles
is the lem of the lengths of these cycles.
(b) transpositions; i.e., (a1b1)(azbs) - - - (arby).

. (Even-Odd Balance) For n > 2, prove that the

function £ sending any even permutation « to the
product « o (12) is a 1-1 correspondence between
the set F,, of even and the set O,, of odd permu-
tations in S,,. How many odd permutations are
there in S57 Why? (Hint: Prove that () is indeed
odd and that ¢ : E,, — O,, is 1-1 and onto.)

. (Roots Shake-&-Bake) For which parameters a

does ax? +2(a — 1)z + 1 = 0 have only one root?
(Hint: az? + 2b1x + ¢ = 0 likes the shortcut quadratic

—b1£4/b2—ac .
formula r = w. But there is another catch!)

Key Group Takeaways:

e (Groups) To show that a set S # () is a group
under an operation * that sends (si,s2) +—
s1 % s € S for any s1,s9 € S, verify the defini-
tion of a group; i.e., for all s, s1, 89,53 € S
(1) *is associative: sy (sa%83) = (51%52)*83;
(2) an identity element e € S: exs = sxe =s;
(3) an inverse s71 € 8: sxs Tt =s5"lxs=¢;

Or find a known group G under the same *
that contains S, and show that S is a subgroup:
(5) S'is closed under x: s1%s3 € S Vs, s2 € S
(6) S is contains the inverses: st € SVs € S.

e Permutations can be written in 2-row and in
cycle (1-row) notation, as product of disjoint
cycles, and as a product of transpositions.

e An even permutation is one that can be writ-
ten as the product of an even number of trans-
positions, and analogously for odd permuta-
tions. No permutation is both even and odd.

e The order of an element ¢ € G is the min
n € N such that g" = eg, the identity in G.

e Cycles are permutations (ajas . ..ax). The or-
der of the cycle is its length k.

IThese worksheets are copyrighted and provided for the personal use of Fall 2020 MATH 74 students only. They may not be

reproduced or posted anywhere without explicit written permission from Prof. Zvezdelina Stankova.
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