Farey Sequence I

BMC Int I Spring 2021

April 28, 2021

1 Pick's Theorem Applications

Theorem 1.1. Let S be a polygon whose vertices all occur at lattice points. Let A be its area, I be the number of interior points and P be the number of points on the perimeter. Then A = I + P/2 + 1.

Exercise 1.2. Prove that you cannot draw an equilateral triangle so that all of its vertices are lattice points.

Exercise 1.3. Prove that you cannot draw a regular hexagon so that all of its vertices are lattice points.

Exercise 1.4. What is the smallest area of a convex pentagon that has all its vertices at lattice points?

Exercise 1.5. Consider the tetrahedron in 3D with vertices at (0,0,0), (1,0,0), (0,1,0), (1,1,r). What is its volume? How many lattice points are in the interior? What about on the boundary?

2 Ford Circles

Definition 2.1. A Ford circle is a circle whose center is at $(\frac{p}{a}, \frac{1}{2a^2})$ and whose radius is $\frac{1}{2a^2}$.

Exercise 2.2. Draw the Ford circles corresponding to 0/1, 1/1 and 1/2. What do you notice about them?

Exercise 2.3. Find the radius and center of the circle that is tangent to both the Ford circles 0/1, 1/2 and the x axis.

Exercise 2.4. Do you notice anything? Can you prove any conjecture that you have?

Exercise 2.5. Prove that two Ford circles are either tangent to each other or don't touch each other at all.

Exercise 2.6. Geometrically prove that if α is irrational, then there are infinitely many fractions p/q such that $|\alpha - p/q| < \frac{1}{2q^2}$.

3 Miscellaneous

Exercise 3.1. Sum all the fractions in the Farey sequences with denominators up to n, F_n . What do you notice?

Remark. The Farey sequence is connected to the elusive Riemann Hypothesis.

Example 3.2. Let $\alpha \in \mathbb{R}$ be an arbitrary number. There are infinitely many coprime integer p, q such that

$$|q\alpha - p| < \frac{1}{q}.$$

Definition 3.3. An algebraic number is a number that is a solution to a polynomial equation.

Theorem 3.4. For any $\epsilon > 0$ and any algebraic number α , for all rational number p/q, there are only finitely many solutions to

$$|\alpha-p/q| \leq \frac{1}{q^{2+\epsilon}}.$$

Corollary 3.5. Transcendental numbers (numbers which are not solutions to polynomial equations) exist.