
Ruler and Compass Constructions and Abstract Algebra 
 

Introduction 
 

Around 300 BC, Euclid wrote a series of 13 books on geometry and number 
theory. These books are collectively called the Elements and are some of the most 
famous books ever written about any subject.  

 

In the Elements, Euclid described several “ruler and compass” constructions. By 
ruler, we mean a straightedge with no marks at all (so it does not look like the 
rulers with centimeters or inches that you get at the store). The ruler allows you to 
draw the (unique) line between two (distinct) given points. The compass allows 
you to draw a circle with a given point as its center and with radius equal to the 
distance between two given points.  

 

But there are three famous constructions that the Greeks could not perform using 
ruler and compass: 

 

• Doubling the cube: constructing a cube having twice the volume of a given cube. 

• Trisecting the angle: constructing an angle 1/3 the measure of a given angle. 

• Squaring the circle: constructing a square with area equal to that of a given circle. 

 

The Greeks were able to construct several regular polygons, but another famous 
problem was also beyond their reach: 

 

• Determine which regular polygons are constructible with ruler and compass.  

 

These famous problems were open (unsolved) for 2000 years!  



Thanks to the modern tools of abstract algebra, we now know the solutions: 

 

• It is impossible to double the cube, trisect the angle, or square the circle using 
only ruler (straightedge) and compass.  

• We also know precisely which regular polygons can be constructed and which 
ones cannot.  

 

(Not everyone seems to be aware of this, however. To this day, mathematicians 
around the world occasionally receive communications from people claiming to 
have found a method to trisect the angle, for example).  

 

The idea of using algebra to bear on geometry problems, and vice-versa, is very 
beautiful and powerful. You are already familiar with analytic geometry, where 
you introduce a system of coordinates (Cartesian or otherwise) that allows you to 
describe many geometric objects and their measures (lengths, areas, volumes, 
angle measures) through algebraic equations and manipulations.  

 

We will embark on a road that also uses algebra to solve these famous old 
problems from classical Greek geometry. But the algebra that we need is more 
sophisticated. It deals with generalized algebraic structures and their properties, 
and we call it abstract algebra.  

 

Some of the objects from abstract algebra that we will meet along our journey are 
groups, rings, fields, rings of polynomials, field extensions, algebraic and 
transcendental numbers, and vector spaces.  

 

(Vector spaces are also protagonists in the subject called linear algebra, which 
studies linear transformations between vector spaces).  

 

 



Overview  
 

• We will start by reviewing some of Euclid’s constructions that you learned in 
high school geometry.  

 

• Next, we will identify the points in the plane with the complex numbers, and we 
will specify precisely what it means to construct a point (number) with ruler and 
compass and what it means for a number to be constructible.  

 

• Then we will take a long dive into abstract algebra and introduce the objects 
mentioned above, together with the relevant facts that we will need.  

 

• Finally, we will use these algebraic tools to describe properties of the 
constructible numbers and to show why the three famous constructions (doubling 
the square, trisecting the angle, squaring the circle) are impossible.  

 

• If time allows, we will say a few words (without any technical details) about the 
solution of the other problem, namely determining precisely which regular 
polygons can be constructed.  

 

Constructions from High School Geometry 
 

In your high school geometry class, you probably learned several of Euclid’s ruler 
and compass constructions. Here are some that you should know how to do: 

(1) Bisect a line segment. 

(2) Draw the perpendicular to a given line through a given point on the line. 

(3) Draw the perpendicular to a given line through a given point not on the line. 

(4) Bisect an angle. 



(5) Copy a given angle so its vertex is a given point and one of its rays lies on a 
given line (and we can also choose the half-plane of this line on which to copy the 
angle). 

(6) Draw the line parallel to a given line through a given point not on the line (the 
Parallel Postulate says this line is unique). 

(7) Draw a triangle that is similar to a given triangle, with a prescribed side. 

(8) Subdivide a line segment into 𝑛𝑛 equal parts, for any 𝑛𝑛 ≥ 1. 

 

For example, constructions (1) – (3) all rely on the fact that the perpendicular 
bisector of a line segment is also the set of all points that are equidistant from its 
two endpoints. This fact is easily proved by properties of isometries (distance-
preserving transformations of the plane, also known as rigid motions) or by 
triangle congruence criteria. 

This fact allows you to construct the perpendicular bisector of a line segment very 
easily: 

 
 

Therefore, you not only bisected the line segment, which is construction (1), but 
you also constructed a line perpendicular to a given line.  

Question 1: Can you modify or add to this construction to perform (2) and (3)? 



Construction (4), bisecting an angle, can be accomplished by making use of the 
SSS triangle congruence criterion: 

 

 
  

Question 2: Can you prove that the angle bisector of an angle (of measure less that 
1800) is the ray (inside the angle and with initial point at the vertex) whose points 
are equidistant from the sides of the angle? 

 

Construction (5), copying an angle, also relies on SSS: 

 

 
 

 

 

 



Constructions (6) and (7) are both based on construction (5).   

The construction of parallel lines (6) relies on the theorem that if a transversal to 
two lines produces congruent corresponding angles, then the two lines are parallel: 

 
 

The construction of similar triangles (7) relies on the AA criterion for triangle 
similarity. It is based on copying two angles whose vertices are the endpoints of a 
given line segment. 

 

Finally, construction (8) is based on construction (6) of parallel lines and on easy 
proportions resulting from similar triangles.  

 

Question 3: Explain how to use ruler and compass to subdivide a line segment into 
𝑛𝑛 equal parts.  

 

 

 

 

 

 

 



The Set of Constructible Numbers 
 

As you know, we can identify the Euclidean plane with the set ℂ of all complex 
numbers: we set up a coordinate system, for example a system of Cartesian 
coordinates, and then every point 𝑃𝑃 in the plane can be uniquely identified with its 
coordinates (𝑎𝑎,𝑏𝑏), or equivalently with the complex number 𝑧𝑧 = (𝑎𝑎, 𝑏𝑏) = 𝑎𝑎 + 𝑖𝑖𝑏𝑏: 

 
With this identification, points in the plane are complex numbers to us, and 
constructing a point is the same as constructing a complex number.  

 

But what exactly does it mean to construct a point or number? We should give a 
precise definition. We are allowed the following constructions of lines and circles: 

 

R: Given two distinct points 𝑧𝑧1, 𝑧𝑧2, we can draw the line that passes through them.  

For this, of course, we use the ruler.  

C: Given a point 𝑧𝑧1 and two distinct points 𝑧𝑧2, 𝑧𝑧3, we can draw the circle with 
center 𝑧𝑧1 and radius |𝑧𝑧2 − 𝑧𝑧3|.  

For this, of course, we use the compass. 

 

From these lines and circles, their points of intersection (when not empty) give us 
new points as follows: 

 

 



𝑃𝑃𝑙𝑙𝑙𝑙 = the point of intersection of two distinct lines constructed as above. 

𝑃𝑃𝑙𝑙𝑙𝑙 = the point(s) of intersection of a line and a circle constructed as above. 

𝑃𝑃𝑙𝑙𝑙𝑙 = the point(s) of intersection of two distinct circles constructed as above. 

 

Now we can use these new points to construct more lines and circles, which in turn 
yield new points, etc.  

  

Definition: The point 𝑧𝑧 ∈ ℂ is constructible if there is a finite sequence of ruler 
and compass constructions using R, C, 𝑃𝑃𝑙𝑙𝑙𝑙,𝑃𝑃𝑙𝑙𝑙𝑙 and 𝑃𝑃𝑙𝑙𝑙𝑙  that begins with 0 and 1 and 
ends with 𝑧𝑧.  

 

We define ℭ = {𝑧𝑧 ∈ ℂ ∣ 𝑧𝑧 is constructible}.  

 

This is the set of all constructible numbers.  

 

Examples:  

• Every 𝑚𝑚 ∈ ℤ is constructible (ℤ is the set of all the integers).  

• Every “Gaussian integer” 𝑚𝑚 + 𝑖𝑖𝑛𝑛 ∈ ℤ[𝑖𝑖] is constructible. 

• The points 1
2

± 𝑖𝑖 √3
2

 are constructible: they are the intersection points of the two 
circles with radius 1 having centers at 0 and 1, respectively.  

• 𝑧𝑧 is constructible if and only if 𝑧𝑧 (its complex conjugate) is constructible. This is 
because of symmetry about the 𝑥𝑥-axis. Any construction that starts with 0 and 1 
and ends with 𝑧𝑧 can be reflected in an obvious way about the 𝑥𝑥-axis to end with 𝑧𝑧. 
This will also be clear once we establish a few basic facts about constructible 
numbers (they form a “field”, and 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 is constructible if and only if both 𝑎𝑎 
and 𝑏𝑏 are constructible).  

 

Question 4: Explain how to construct 𝑧𝑧 = 𝑚𝑚 + 𝑖𝑖𝑛𝑛 where 𝑚𝑚, 𝑛𝑛 ∈ ℤ.  



Example: Since we can copy any given angle on a given initial ray, the regular    
𝑛𝑛-gon is constructible if and only if 𝜉𝜉𝑛𝑛 = 𝑒𝑒2π𝑖𝑖/𝑛𝑛 is constructible: 

• If the regular 𝑛𝑛-gon is constructible, then we can construct an angle of measure 
2𝜋𝜋/𝑛𝑛 using the center and two adjacent vertices of the 𝑛𝑛-gon (if the center is not 
yet a given point, we can easily construct it, for example, as the intersection of the 
bisectors of the interior angles of the 𝑛𝑛-gon). Then we copy this angle so that it has 
vertex at the origin and one of its rays is the positive 𝑥𝑥-axis. We can also arrange it 
so that the other ray lies on the upper half plane. Then the intersection of that other 
ray with the unit circle is 𝜉𝜉𝑛𝑛.  

• If 𝜉𝜉𝑛𝑛 is constructible, then we can construct the angle of measure 2𝜋𝜋/𝑛𝑛 whose 
vertex is 0 and whose rays go through 1 and 𝜉𝜉𝑛𝑛 respectively. Copying this angle 
repeatedly using always 0 as the vertex, and then intersecting the resulting rays 
with the unit circle, we obtain all the 𝑛𝑛th roots of 1, namely 1, 𝜉𝜉𝑛𝑛, 𝜉𝜉𝑛𝑛2, … , 𝜉𝜉𝑛𝑛𝑛𝑛−1. 
Joining these points in the obvious way, we obtain a regular 𝑛𝑛-gon.  

 

Remark # 1: Playing by the Rules 

 

We only allow exact constructions, and, by definition, they must be achieved in a 
finite number of steps. Also, we do not accept any other instruments except for the 
unmarked ruler and the compass.  

If we ease any of these restrictions, then more constructions become possible. That 
is, more numbers can be obtained.  

 

Take for example the problem of trisecting the angle.  

 

• If we allow a ruler that has two points marked on it, together with a compass, 
then we can trisect any angle:  

Say the two marked points on the ruler are a distance 𝑟𝑟 apart. Given an angle 
∠𝐴𝐴𝐴𝐴𝐴𝐴 with measure 𝜃𝜃, draw the circle with center 𝐴𝐴 and radius 𝑟𝑟. Let 𝑋𝑋 be the 
point where the ray 𝐴𝐴𝐴𝐴�����⃗  meets the circle and let 𝑌𝑌 be the point where the ray 
opposite to 𝐴𝐴𝐴𝐴�����⃗  meets the circle.  



Now place the ruler with its edge on 𝑋𝑋 and one mark on the ray 𝐴𝐴𝑌𝑌�����⃗  at a point 𝐷𝐷. 
Slide it until the other marked point lies on the circle at a point 𝐸𝐸. Then ∠𝐸𝐸𝐷𝐷𝐴𝐴 has 
measure 𝜃𝜃/3: 

 
 

Question 5: Show that ∠𝐸𝐸𝐷𝐷𝐴𝐴 has measure 𝜃𝜃/3, where 𝜃𝜃 is the measure of ∠𝐴𝐴𝐴𝐴𝐴𝐴. 

 

• With (unmarked) ruler and compass only, we can also approximate the trisection 
of any angle to any desired (but not exact) accuracy:  

The geometric series 1
4

+ 1
16

+ 1
64

+  ⋯ converges to  
1
4

1−14
= 1

3
. Given an angle of 

measure 𝜃𝜃, we can bisect it repeatedly, as many times as we want. So we can find 
an angle of measure 𝜃𝜃

2𝑛𝑛
 for any 𝑛𝑛 ≥ 1. Since we can copy (and therefore add) 

angles, we can construct an angle of measure as close to 𝜃𝜃/3 as we want, by using 
sufficiently many terms of this geometric sequence.  

 

• If we allow constructions with infinitely many steps, then the above geometric 
sequence can be used to trisect any angle.  

 

If you have a compass and a ruler with just two marks on it, not only you can 
trisect the angle (as we just saw), but you can also double the cube: 



 
 

In the picture, 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐸𝐸𝐴𝐴 is a regular hexagon with side length 1, and 𝑋𝑋𝑌𝑌 = 1. 

 

Question 6 (Challenge): 

(a) Show that 𝑌𝑌𝐴𝐴 = 21/3 = √23 .  

(b) Explain how you can use compass and a marked ruler with two marks at a 
distance 1 from each other to construct a segment of length of length √23 . 

(c) Explain why the cube can be doubled with compass and a twice-marked ruler.  

 

Remark # 2: Constructions from a Given Set of Points 

 

If, instead of starting our constructions from the initial set of points {0, 1}, we start 
from an arbitrary finite set 𝑃𝑃 that contains 0 and 1, then we can talk about 
statements like “bisecting a given angle” or “bisecting a given segment” without 
having to worry about whether this given angle or segment is constructible. 

 

  



This is in fact the more natural setting for the high school constructions that we 
reviewed above. For example, we can bisect any given segment regardless of its 
length, because if the segment is given, then we can use its length in our 
construction. The length of the segment may not be a constructible number: it may 
be impossible to construct it if we start from 0 and 1. But we do not care because 
this number is just given to us, so we can open the compass to this length to draw a 
circle.  

 

The entire theory of ruler and compass constructions works in the same way if we 
start from 0 and 1 or if we start from a bigger set 𝑃𝑃 of given points, even if the set 
of constructible points gets bigger.  

 

Having a bigger finite set of initial points does not change the impossibility of 
trisecting the angle or doubling the cube or squaring the circle, because these 
problems ask for a method that will trisect any angle, or double any cube, or square 
any circle. We can obviously trisect some angles (for example, 1800 or 900), and if 
we start with more given points, we may be able to trisect more angles. But there 
will always be angles that we cannot trisect.  

 

 

 

 

 

 

 

 

 

 

 



Overall Strategy: a Look Ahead 
 

From now on, things will get a little more abstract and sometimes technical. So it is 
a good idea to keep in mind our objective and an overall strategy to get there.  

 

• We want to prove that certain constructions are impossible to achieve with 
(unmarked) ruler and compass.  

• It is easy to see that this is equivalent to proving that certain numbers are not 
constructible.  

• Using tools of abstract algebra, we will eventually find a property that a number 
must possess in order for it to be constructible.  

• Finally, we will show that certain numbers do not possess this property, and 
therefore are not constructible, and therefore certain constructions are impossible 
to achieve by ruler and compass.  

 

We need to develop the algebraic tools needed to find that useful property that all 
constructible numbers must possess, and this will take a significant amount of 
work. But as a reward, the concepts from abstract algebra that we will discuss are 
of paramount importance in all branches of higher mathematics.  

 

Groups 
 

Recall that a binary operation on a set 𝑆𝑆 is a function ∗: 𝑆𝑆 × 𝑆𝑆 → 𝑆𝑆. We use the 
notation ∗ (𝑎𝑎, 𝑏𝑏) = 𝑎𝑎 ∗ 𝑏𝑏.  

Definition: A group is a set 𝐺𝐺 and a binary operation ∗ on 𝐺𝐺 such that  

• Associativity: (𝑎𝑎 ∗ 𝑏𝑏) ∗ 𝑐𝑐 = 𝑎𝑎 ∗ (𝑏𝑏 ∗ 𝑐𝑐)   ∀ 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐺𝐺 

• Identity: ∃ 𝑒𝑒 ∈ 𝐺𝐺 such that  𝑒𝑒 ∗ 𝑔𝑔 = 𝑔𝑔 ∗ 𝑒𝑒 = 𝑔𝑔    ∀ 𝑔𝑔 ∈ 𝐺𝐺 

• Inverses: ∀ 𝑔𝑔 ∈ 𝐺𝐺, ∃ 𝑔𝑔−1 ∈ 𝐺𝐺 such that 𝑔𝑔 ∗ 𝑔𝑔−1 = 𝑔𝑔−1 ∗ 𝑔𝑔 = 𝑒𝑒 



Examples: 

• ℤ,ℚ,ℝ and ℂ (the sets of all integers, rational numbers, real numbers, and 
complex numbers respectively) are all groups under the operation of addition.  

• However, none of these sets is a group under multiplication. Why? 

• If we remove 0 from each of these sets, we get the sets ℤ∗,ℚ∗,ℝ∗ and ℂ∗. Three 
of them are groups under multiplication, and one is not. Which one is not? 

• Let 𝑛𝑛 > 1 be an integer. The set ℤ𝑛𝑛 = {0, 1, 2, … , 𝑛𝑛 − 1} under addition modulo 
𝑛𝑛 is a group.  

• The set 𝑀𝑀𝑛𝑛(ℝ) of 𝑛𝑛 × 𝑛𝑛 matrices with real entries is not a group under matrix 
multiplication, but its subset consisting of all invertible matrices is a group.  

 

Example: A very important example of a group is the following. Remember that a 
function is a bijection if it is both injective (one-to-one) and surjective (onto).  

Let 𝐴𝐴 be any nonempty set. The set of all bijections 𝐴𝐴 → 𝐴𝐴, which are called 
permutations of 𝐴𝐴, forms a group under the operation of composition of functions. 
The identity element is the identity function on 𝐴𝐴, and the inverse of a bijection is 
its inverse as a function. This group is usually denoted by 𝑆𝑆𝐴𝐴.  

 

In particular, if 𝐴𝐴 is the set {1, 2, 3, … , 𝑛𝑛}, then the resulting group is called the 
group of permutations on 𝑛𝑛 letters, or more commonly, the symmetric group on 𝑛𝑛 
letters, and we denote this group by 𝑆𝑆𝑛𝑛.  

 

The permutations of a mathematical object that preserve some feature(s) is a group, 
and groups of this kind arise in many branches of mathematics.  

 

For example, the subset of all permutations of the plane that preserve the distance 
between points is a group, because composition of functions preserves this feature, 
as do inverse functions. This is the group of all isometries or rigid motions of the 
plane.  

 



Definition: if the operation of a group 𝐺𝐺 is commutative, i.e., 𝑎𝑎𝑏𝑏 = 𝑏𝑏𝑎𝑎   ∀𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺, 
then we say that 𝐺𝐺 is abelian. 

 

Examples:  

• The group of permutations of a set (having more than 2 elements) is not abelian, 
because composition of functions is not commutative.  

• The group of invertible 𝑛𝑛 × 𝑛𝑛 matrices under matrix multiplication is not abelian 
either, because matrix multiplication is not commutative.  

• The other groups that we mentioned above are all abelian, because addition and 
multiplication of complex numbers is commutative, and so is addition modulo 𝑛𝑛. 

 

Question 7: Prove that in any group 𝐺𝐺,  

(a) The identity element 𝑒𝑒 ∈ 𝐺𝐺 is unique. 

(b) Given 𝑔𝑔 ∈ 𝐺𝐺, 𝑔𝑔−1 is unique. 

 

Hint: The standard way to prove the uniqueness of an object having some property 
is to show that if 𝐴𝐴 and 𝐴𝐴 are two such objects, then 𝐴𝐴 = 𝐴𝐴. 

For part (a), show that if 𝑒𝑒 and 𝑒𝑒′ are both identity elements of 𝐺𝐺, then 𝑒𝑒 = 𝑒𝑒′. 

For part (b), show that if ℎ and ℎ′ are both inverse elements of 𝑔𝑔, then ℎ = ℎ′.  

 

Rings and Fields 
 

For us, a ring will always mean a “commutative ring with unity”. This means that 
multiplication is commutative and there is a multiplicative identity. If you take a 
class in abstract algebra, you will see a more general definition.  

 

 



Definition: A ring is a set 𝑅𝑅 with two binary operations, + (addition) and ⋅ 
(multiplication), such that 

• 𝑅𝑅 is an abelian group under addition. We denote the additive identity by 0.  

• Multiplication is associative: (𝑎𝑎𝑏𝑏)𝑐𝑐 = 𝑎𝑎(𝑏𝑏𝑐𝑐)      ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑅𝑅 

• Multiplication is commutative: 𝑎𝑎𝑏𝑏 = 𝑏𝑏𝑎𝑎      ∀𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅 

• Multiplicative identity: ∃ 1 ∈ 𝑅𝑅 such that 1𝑎𝑎 = 𝑎𝑎     ∀𝑎𝑎 ∈ 𝑅𝑅 

• The distributive law holds: 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐      ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑅𝑅 

 

Note that we usually denote 𝑎𝑎 ⋅ 𝑏𝑏 simply by 𝑎𝑎𝑏𝑏.  

 

Examples: 

• ℤ,ℚ,ℝ and ℂ are all rings (with the usual addition and multiplication). 

• ℤ𝑛𝑛 is a ring with addition and multiplication modulo 𝑛𝑛.  

• If  𝑅𝑅 is a ring, the set of all polynomials with coefficients in 𝑅𝑅 is denoted by 𝑅𝑅[𝑡𝑡]. 
This is also a ring. We will be very interested in this kind of ring, especially when 
𝑅𝑅 is a field (which we will define below).  

 

Question 8: Prove that if 𝑅𝑅 is a ring, then 0𝑎𝑎 = 0   ∀𝑎𝑎 ∈ 𝑅𝑅. 

 

Two nonzero elements 𝑎𝑎,𝑏𝑏 of a ring such that 𝑎𝑎𝑏𝑏 = 0 are called zero divisors.  

A ring with no zero divisors is called an integral domain. So in an integral domain, 
𝑎𝑎𝑏𝑏 = 0 ⟹ 𝑎𝑎 = 0 or 𝑏𝑏 = 0 (the converse is true in any ring by Question 8).  

 

A unit in a ring is an element that has a multiplicative inverse. That is, it is an 
element 𝑢𝑢 for which there is an element 𝑣𝑣 such that 𝑢𝑢𝑣𝑣 = 1.  

We denote by −𝑎𝑎 the additive inverse of an element 𝑎𝑎 and by 𝑢𝑢−1 or  1
𝑢𝑢
  the 

multiplicative inverse of an element 𝑢𝑢.  



Question 9:  

(a) Prove that ℤ,ℚ,ℝ and ℂ are integral domains.  

(b) Is ℤ5 an integral domain? How about ℤ6? Explain your answers. 

 

Definition: A field is a ring with 1 ≠ 0 whose nonzero elements are all units. That 
is, every nonzero element has a multiplicative inverse.  

If 𝐾𝐾 is a field, then the set 𝐾𝐾∗ = 𝐾𝐾 − {0} of all nonzero elements is an abelian 
group under multiplication.  

 

Question 10: Prove that every field is an integral domain.  

 

Examples: 

• ℚ,ℝ and ℂ are fields, but ℤ is not.  

• If 𝑝𝑝 is prime, then ℤ𝑝𝑝 is a field. Can you prove this? But if 𝑛𝑛 is composite, then 
ℤ𝑛𝑛 is not a field. In fact, it is not even an integral domain. Can you prove this? 

 

The Complex Numbers 
 

Since we identified the Euclidean plane with the field ℂ of complex numbers, this 
is the stage in which we will work for ruler and compass constructions. Here are 
some things you should remember about ℂ: 

 

• How to perform arithmetic in ℂ, both in rectangular and in polar coordinates.  
You should know the geometric properties of the arithmetic operations. Remember 
that 𝑒𝑒𝑖𝑖𝜃𝜃 = cos𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃.  

 



• The absolute value or magnitude |𝑧𝑧| of a complex number 𝑧𝑧. If 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 =
(𝑎𝑎, 𝑏𝑏), then |𝑧𝑧| = √𝑎𝑎2 + 𝑏𝑏2 ∈ ℝ is the distance from 𝑧𝑧 to the origin O.  

 

• Conjugation: if 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 = (𝑎𝑎, 𝑏𝑏), then its conjugate is 𝑧𝑧̅ = 𝑎𝑎 − 𝑖𝑖𝑏𝑏 = (𝑎𝑎,−𝑏𝑏). 
Remember that 𝑧𝑧𝑧𝑧̅ = |𝑧𝑧|2, and therefore 𝑧𝑧−1 = �̅�𝑧

|𝑧𝑧|2 for 𝑧𝑧 ≠ 0.  

Also,  𝑧𝑧1 + 𝑧𝑧2��������� = 𝑧𝑧1� + 𝑧𝑧2�  and 𝑧𝑧1𝑧𝑧2������ = 𝑧𝑧1� 𝑧𝑧2� . 

 

• 𝑛𝑛th roots: every 0 ≠ 𝑧𝑧 ∈ ℂ has exactly 𝑛𝑛 distinct 𝑛𝑛th roots, located at the vertices 
of a regular 𝑛𝑛-gon centered at O. If 0 ≠ 𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑖𝑖𝜃𝜃, let 𝑟𝑟1/𝑛𝑛 be the unique positive 

(that implies real, of course) 𝑛𝑛th root of 𝑟𝑟 > 0 and let 𝜉𝜉𝑛𝑛 = 𝑒𝑒𝑖𝑖
2𝜋𝜋
𝑛𝑛 . Then the 𝑛𝑛th roots 

of 𝑧𝑧 are 𝑟𝑟1/𝑛𝑛𝑒𝑒𝑖𝑖
𝜃𝜃
𝑛𝑛 = 𝑤𝑤, 𝑤𝑤𝜉𝜉𝑛𝑛,𝑤𝑤𝜉𝜉𝑛𝑛2, … ,𝑤𝑤𝜉𝜉𝑛𝑛𝑛𝑛−1.  

 

• In particular, the 𝑛𝑛th roots of 1 are 1, 𝜉𝜉𝑛𝑛, 𝜉𝜉𝑛𝑛2, … , 𝜉𝜉𝑛𝑛𝑛𝑛−1.  

 

Finally, the complex numbers have a formidable property: ℂ is algebraically 
closed. This fact is also called the Fundamental Theorem of Algebra (FTA), and it 
means that every non-constant polynomial with coefficients in ℂ has a root, or 
zero, in ℂ.  

 

An immediate consequence of FTA is that every non-constant polynomial with 
complex coefficients factors into linear factors over ℂ. Another immediate 
consequence is that a polynomial of degree 𝑛𝑛 with complex coefficients has 
exactly 𝑛𝑛 zeros, counting multiplicity. 

 

Note that ℚ and ℝ are not algebraically closed. For example, the polynomial     
𝑡𝑡2 − 2 has rational coefficients but no rational roots. The polynomial 𝑡𝑡2 + 1 has 
real coefficients but no real roots. In ℂ, any (non-constant) polynomial has a zero, 
no matter how large its degree.  

 



The Ring of Polynomials 
 

If 𝑅𝑅 is a ring, the ring of polynomials over 𝑅𝑅 in the indeterminate 𝑡𝑡 is  

𝑅𝑅[𝑡𝑡] = {𝑝𝑝(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + ⋯+ 𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛 | 𝑛𝑛 ∈ ℤ≥0,  𝑎𝑎𝑖𝑖 ∈ 𝑅𝑅} 

The 𝑎𝑎𝑖𝑖 are called the coefficients of 𝑝𝑝(𝑡𝑡). We say that 𝑝𝑝(𝑡𝑡) ∈ 𝑅𝑅[𝑡𝑡] is a polynomial 
over 𝑅𝑅, or with coefficients in 𝑅𝑅. 

 

Sometimes we will simply write 𝑝𝑝 instead of 𝑝𝑝(𝑡𝑡), when the indeterminate is 
understood.  

 

Example: The polynomial 𝑝𝑝 = 𝑝𝑝(𝑡𝑡) = 3𝑡𝑡5 − 7𝑡𝑡3 + 𝑡𝑡2 + 2𝑡𝑡 − 3 is a polynomial 
over ℤ, since its coefficients are all integers. That is, 𝑝𝑝 ∈ ℤ[𝑡𝑡].  

Since ℤ ⊆ ℚ ⊆ ℝ ⊆ ℂ, we also have 𝑝𝑝 ∈ ℚ[𝑡𝑡], 𝑝𝑝 ∈ ℝ[𝑡𝑡], 𝑝𝑝 ∈ ℂ[𝑡𝑡].  

 

The usual polynomial addition and multiplication make 𝑅𝑅[𝑡𝑡] a ring. The additive 
identity is 0, the zero polynomial, and the multiplicative identity is the constant 
polynomial 1.  

We will be mostly interested in the ring 𝐾𝐾[𝑡𝑡] where 𝐾𝐾 is a field. Note that 𝐾𝐾[𝑡𝑡] is 
an integral domain but not a field. Why? 

 

Definition: Let 0 ≠ 𝑝𝑝 ∈ 𝑅𝑅[𝑡𝑡]. If 𝑝𝑝 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + ⋯+ 𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛 where 𝑎𝑎𝑛𝑛 ≠ 0, then 
the degree of 𝑝𝑝 is 𝑛𝑛. We write 𝜕𝜕𝑝𝑝 = 𝑛𝑛.  

 

We can either say that the zero polynomial has no degree, or we can define      
𝜕𝜕0 = −∞, with the symbol −∞ obeying the rules −∞ < 𝑛𝑛,−∞ + 𝑛𝑛 = −∞     
∀𝑛𝑛 ∈ ℤ and (−∞) + (−∞) = −∞. Then we can easily see that 

Claim: If 𝑝𝑝, 𝑞𝑞 ∈ 𝑅𝑅[𝑡𝑡], then 𝜕𝜕(𝑝𝑝 + 𝑞𝑞) ≤ max{𝜕𝜕𝑝𝑝,𝜕𝜕𝑞𝑞}, and if 𝑅𝑅 has no zero 
divisors, then 𝜕𝜕(𝑝𝑝𝑞𝑞) = 𝜕𝜕𝑝𝑝 + 𝜕𝜕𝑞𝑞. 



A constant polynomial is a polynomial of degree 0, or the zero polynomial. A 
linear polynomial is a polynomial of degree 1. A quadratic, cubic, quartic, and 
quintic polynomial is a polynomial of degree 2, 3, 4, and 5 respectively.  

 

Divisibility in 𝑲𝑲[𝒕𝒕] 
 

Let 𝐾𝐾 be any field. If you want, you can just think that 𝐾𝐾 = ℂ.  

Division Algorithm: Let 𝑓𝑓,𝑔𝑔 ∈ 𝐾𝐾[𝑡𝑡] with 𝑓𝑓 ≠ 0. There exist unique polynomials 
𝑞𝑞, 𝑟𝑟 ∈ 𝐾𝐾[𝑡𝑡] such that 𝑔𝑔 = 𝑓𝑓𝑞𝑞 + 𝑟𝑟 and 𝜕𝜕𝑟𝑟 < 𝜕𝜕𝑓𝑓. 

(𝑞𝑞 is the quotient and 𝑟𝑟 is the remainder when you divide 𝑔𝑔 by 𝑓𝑓). 

 

The Division Algorithm in 𝐾𝐾[𝑡𝑡] works just like in ℤ, except that instead of 
requiring the remainder to be smaller than the divisor, we require it to have degree 
smaller than that of the divisor.  

Division of one polynomial by another also works almost exactly as division with 
remainder in ℤ.  

 

Question 11: Find the quotient and remainder when dividing 𝑔𝑔 = 𝑡𝑡7 − 𝑡𝑡3 + 5 by  
𝑓𝑓 = 𝑡𝑡3 + 7.  

 

Definition: Let 𝑓𝑓,𝑔𝑔 ∈ 𝐾𝐾[𝑡𝑡]. We say that 𝑓𝑓 divides 𝑔𝑔, or 𝑓𝑓 is a factor of 𝑔𝑔, or 𝑓𝑓 is a 
divisor of 𝑔𝑔, or 𝑔𝑔 is a multiple of 𝑓𝑓, if ∃ℎ ∈ 𝐾𝐾[𝑡𝑡] such that 𝑔𝑔 = 𝑓𝑓ℎ.  

We use the notation 𝑓𝑓|𝑔𝑔 when 𝑓𝑓 divides 𝑔𝑔 and 𝑓𝑓 ∤ 𝑔𝑔 when 𝑓𝑓 does not divide 𝑔𝑔.  

 

An important consequence of the Division Algorithm is the Factor Theorem: 

 

Factor Theorem: Let 𝑝𝑝(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] with 𝜕𝜕𝑝𝑝 > 0, and let 𝛼𝛼 ∈ 𝐾𝐾. 

Then 𝑝𝑝(𝛼𝛼) = 0 if and only if (𝑡𝑡 − 𝛼𝛼)|𝑝𝑝(𝑡𝑡) in 𝐾𝐾[𝑡𝑡].  



Question 12: Prove the Factor Theorem. 

Hint: Apply the Division Algorithm with 𝑔𝑔 = 𝑝𝑝(𝑡𝑡) and 𝑓𝑓 = 𝑡𝑡 − 𝛼𝛼.  

 

The Factor Theorem is the reason that FTA implies that every non-constant 
polynomial over ℂ factor completely into linear factors.  

 

Definition: Let 𝑓𝑓,𝑔𝑔 ∈ 𝐾𝐾[𝑡𝑡]. We say that 𝑑𝑑 ∈ 𝐾𝐾[𝑡𝑡] is a highest common factor 
(hcf) or greatest common divisor (gcd) of 𝑓𝑓 and 𝑔𝑔 if 

• 𝑑𝑑|𝑓𝑓 and 𝑑𝑑|𝑔𝑔 

• (𝑒𝑒|𝑓𝑓 and 𝑒𝑒|𝑔𝑔) ⟹ 𝑒𝑒|𝑑𝑑 

We use the notation hcf(𝑓𝑓,𝑔𝑔), or gcd(𝑓𝑓,𝑔𝑔), or sometimes simply (𝑓𝑓,𝑔𝑔).  

 

hcf(𝑓𝑓,𝑔𝑔) is not unique, but it is “almost unique”: it is unique up to a constant 
multiple. We will usually say “the hcf of 𝑓𝑓 and 𝑔𝑔” with the assumption that this is 
understood.  

 

Exactly as it happens in ℤ, the Division Algorithm is the basis for another 
algorithm that produces hcf(𝑓𝑓,𝑔𝑔) for nonzero polynomials 𝑓𝑓 and 𝑔𝑔 over 𝐾𝐾. It is 
called the Euclidean Algorithm. It is based on repeated applications of the Division 
Algorithm and a very simple but important fact (that also works just like in ℤ): 

If 𝑎𝑎|𝑏𝑏 and 𝑎𝑎|𝑐𝑐 in 𝐾𝐾[𝑡𝑡], then 𝑎𝑎|(𝑝𝑝𝑏𝑏 + 𝑞𝑞𝑐𝑐)   ∀𝑝𝑝,𝑞𝑞 ∈ 𝐾𝐾[𝑡𝑡] 

 

The Euclidean Algorithm not only produces hcf(𝑓𝑓,𝑔𝑔), but also allows you to find a 
combination of 𝑓𝑓 and 𝑔𝑔 that equals hcf(𝑓𝑓,𝑔𝑔). That is, it allows you to explicitly 
find polynomials 𝑎𝑎 and 𝑏𝑏 as in the following lemma: 

 

Lemma: Let 𝑓𝑓,𝑔𝑔 ∈ 𝐾𝐾[𝑡𝑡] be nonzero polynomials and let 𝑑𝑑 = hcf(𝑓𝑓,𝑔𝑔). Then 
∃𝑎𝑎, 𝑏𝑏 ∈ 𝐾𝐾[𝑡𝑡] such that 𝑑𝑑 = 𝑎𝑎𝑓𝑓 + 𝑏𝑏𝑔𝑔. 



Irreducible Polynomials and Unique Factorization 
 

Definition: Let 𝑅𝑅 be a ring and let 𝑓𝑓 ∈ 𝑅𝑅[𝑡𝑡] be a nonconstant polynomial. We say 
that 𝑓𝑓 is irreducible in 𝑅𝑅[𝑡𝑡], or irreducible over 𝑅𝑅, if it cannot be written as a 
product 𝑓𝑓 = 𝑔𝑔ℎ of polynomials over 𝑅𝑅 with 𝜕𝜕𝑔𝑔 < 𝜕𝜕𝑓𝑓 and 𝜕𝜕ℎ < 𝜕𝜕𝑓𝑓. Equivalently, 
if 𝑓𝑓 = 𝑔𝑔ℎ, then 𝑔𝑔 or ℎ is constant.  

Of course, if 𝑓𝑓 can be written as a product of two polynomials over 𝑅𝑅, both of 
lower degree, then we say that 𝑓𝑓 is reducible over 𝑅𝑅. 

 

Notes:  

• Let 𝑅𝑅1 ⊆ 𝑅𝑅2 and 𝑓𝑓 ∈ 𝑅𝑅1[𝑡𝑡]. Obviously, if 𝑓𝑓 is reducible over 𝑅𝑅1, then it is 
reducible over 𝑅𝑅2. So if 𝑓𝑓 is irreducible over 𝑅𝑅2, then it is irreducible over 𝑅𝑅1.  

The converse is false, of course. For example, 𝑡𝑡2 − 2 is irreducible over ℤ or ℚ but 
reducible over ℝ. [But see Gauss’s Lemma below for an important exception: if a 
polynomial is irreducible over ℤ, then it is also irreducible over ℚ]. 

• Polynomials of degree 1 are always irreducible.  

• If 𝑓𝑓 ∈ 𝐾𝐾[𝑡𝑡] has degree 2 or 3, then it is clear from the Factor Theorem that 𝑓𝑓 is 
reducible over 𝐾𝐾 (a field) if and only if it has a zero in 𝐾𝐾. Equivalently, if 𝑓𝑓 has no 
zeros in 𝐾𝐾, then if is irreducible over 𝐾𝐾. Of course, this is not true if 𝜕𝜕𝑓𝑓 > 3.  

 

Definition: 𝑓𝑓,𝑔𝑔 ∈ 𝐾𝐾[𝑡𝑡] are coprime if hcf(𝑓𝑓,𝑔𝑔) = 1.  

We also say that 𝑓𝑓 is prime to 𝑔𝑔.  

 

Lemma: Let 𝑓𝑓 be irreducible in 𝐾𝐾[𝑡𝑡]. If 𝑓𝑓|𝑔𝑔ℎ, then 𝑓𝑓|𝑔𝑔 or 𝑓𝑓|ℎ. 

(This lemma says that in 𝐾𝐾[𝑡𝑡], an irreducible element is prime. The converse is 
true in any integral domain). 

The ring of polynomials over a field, 𝐾𝐾[𝑡𝑡], has the important property of being a 
unique factorization domain (UFD), like ℤ: 



 

Theorem: Factorization into irreducible polynomials in 𝐾𝐾[𝑡𝑡] is unique (up to the 
order of the factors and a constant multiple). 

 

Irreducibility Criteria 
 

It is useful to know if a polynomial is irreducible. Not only we do not need to 
bother looking for factors (an irreducible polynomial does not have nontrivial 
factors), but the zeros and the degree of an irreducible polynomial will play a 
crucial role later.  

 

In general, deciding if a polynomial over a ring is irreducible is not easy (of course, 
there are exceptions. For example, since ℂ is algebraically closed (FTA), the only 
irreducible polynomials over ℂ are the linear polynomials).  

We will be mainly interested in the irreducibility of polynomials over ℚ, and 
although there is no general method to solve this problem, we do have a few useful 
tricks that can help in some cases.  

 

Gauss’s Lemma: Let 𝑓𝑓 ∈ ℤ[𝑡𝑡]. If 𝑓𝑓 is irreducible over ℤ, then it is also 
irreducible over ℚ.  

 

This lemma is very useful because instead of having to consider factors with 
rational coefficients, we only need to consider factors having integer 
coefficients. This allows for divisibility arguments and other tricks.  

Eisenstein’s Criterion: Let 𝑓𝑓(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + ⋯+ 𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛 ∈ ℤ[𝑡𝑡]. Suppose there is 
a prime 𝑝𝑝 such that 

(1)  𝑝𝑝 ∤ 𝑎𝑎𝑛𝑛  (2)  𝑝𝑝|𝑎𝑎𝑖𝑖 for 0 ≤ 𝑖𝑖 < 𝑛𝑛  (3)  𝑝𝑝2 ∤ 𝑎𝑎0 

Then 𝑓𝑓 is irreducible over ℚ. 

 



This criterion is proved using Gauss’s Lemma and divisibility properties of primes.  

 

Examples: 

• 𝑡𝑡2 − 3,    3𝑡𝑡8 − 2,    2𝑡𝑡4 + 25𝑡𝑡3 − 15𝑡𝑡2 + 1000𝑡𝑡 + 45 are irreducible over ℚ.  

• Eisenstein’s Criterion could apply for more than one prime.  

For example, 3𝑥𝑥7 − 10 is irreducible over ℚ.  

 

Question 13: Prove that 2
9
𝑡𝑡5 + 5

3
𝑡𝑡4 + 𝑡𝑡3 + 1

3
 is irreducible over ℚ. 

 

The next lemma follows from a clever application of Eisenstein’s Criterion and the 
fact that if 𝑝𝑝 is prime, then 𝑝𝑝| �𝑝𝑝𝑟𝑟� for 0 < 𝑟𝑟 < 𝑝𝑝. 

 

Question 14: Prove that if 𝑝𝑝 is prime, then 𝑝𝑝| �𝑝𝑝𝑟𝑟� for 0 < 𝑟𝑟 < 𝑝𝑝.  

 

Lemma: If 𝑝𝑝 is prime, then 𝑓𝑓(𝑡𝑡) = 1 + 𝑡𝑡 + 𝑡𝑡2 + ⋯+ 𝑡𝑡𝑝𝑝−1 is irreducible over ℚ.  

 

Question 15: 

(a) Prove that given any positive integer 𝑛𝑛, there are irreducible polynomials in 
ℚ[𝑡𝑡] with degree larger than 𝑛𝑛.  

(b) By contrast, prove that if 𝑓𝑓 ∈ ℝ[𝑡𝑡] is irreducible over ℝ, then 𝜕𝜕𝑓𝑓 = 1 or 2.  

Hint for (b): Prove that if 𝛼𝛼 ∈ ℂ is a zero of 𝑓𝑓, then so is its complex conjugate α. 
Deduce that the non-real zeros of 𝑓𝑓 come in conjugate pairs.  

 

The last irreducibility criterion has to do with reducing the coefficients of a 
polynomial modulo 𝑛𝑛. 

 



Reduction Modulo 𝒏𝒏: There is a natural map ℤ[𝑡𝑡] → ℤ𝑛𝑛[𝑡𝑡] that reduces the 
coefficients modulo 𝑛𝑛.  

For example, if 𝑓𝑓 = 3𝑡𝑡4 + 7𝑡𝑡3 + 6𝑡𝑡2 + 5𝑡𝑡 + 11 ∈ ℤ[𝑡𝑡], then 

• Reduction modulo 2 maps 𝑓𝑓 to 𝑓𝑓 = 𝑡𝑡4 + 𝑡𝑡3 + 𝑡𝑡 + 1 ∈ ℤ2[𝑡𝑡] 

• Reduction modulo 5 maps 𝑓𝑓 to 𝑓𝑓 = 3𝑡𝑡4 + 2𝑡𝑡3 + 𝑡𝑡2 + 1 ∈ ℤ5[𝑡𝑡] 

 

Suppose that 𝑛𝑛 does not divide the leading coefficient of 𝑓𝑓, so that the leading term 
does not disappear upon reduction modulo 𝑛𝑛, and so 𝜕𝜕𝑓𝑓 = 𝜕𝜕𝑓𝑓.  

If 𝑓𝑓 = 𝑔𝑔ℎ, then from the laws of modular arithmetic we get 𝑓𝑓 = 𝑔𝑔ℎ. 

So, if 𝑓𝑓 is reducible over ℤ, then 𝑓𝑓 is reducible over ℤ𝑛𝑛. Therefore: 

 

If 𝑓𝑓 is irreducible over ℤ𝑛𝑛, then 𝑓𝑓 is irreducible over ℤ 

(and therefore also over ℚ by Gauss’s Lemma) 

 

This is very nice, because ℤ𝑛𝑛 has only finitely many elements, so there are only 
finitely many possible factors of 𝑓𝑓, and you can check them all.  

The trick is to find a good value of 𝑛𝑛. In practice, you can usually choose it to be a 
prime 𝑝𝑝.  

 

Question 16 (Challenge): Let 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 and 𝑎𝑎4 be odd integers. Must  

 𝑓𝑓(𝑡𝑡) = 𝑎𝑎4𝑡𝑡4 + 𝑎𝑎3𝑡𝑡3 + 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎0 be irreducible over ℚ? 

 

 

 

 

 



Field Extensions 
 

Definition: A field extension is a pair of fields 𝐾𝐾, 𝐿𝐿 such that 𝐾𝐾 ⊆ 𝐿𝐿.  

We use the notation 𝐿𝐿:𝐾𝐾.  

 

Another way of saying this is to say that 𝐾𝐾 is a subfield of 𝐿𝐿. A subfield is a subset 
of a field that is itself a field, and therefore it is closed under field operations:  
addition, multiplication, additive and multiplicative inverses.  

The fields that we will work with are all subfields of ℂ. Note that any subfield of ℂ 
must contain 0 and 1, and therefore (since it is closed under field operations) it 
must contain ℚ.  

 

Definition: Let 𝐾𝐾 be a field and 𝑋𝑋 ⊆ 𝐾𝐾 a subset. The subfield of 𝐾𝐾 generated by 𝑋𝑋 
is the intersection of all the subfields of 𝐾𝐾 that contain 𝑋𝑋.  

Equivalently, it is the (unique) smallest subfield of 𝐾𝐾 containing 𝑋𝑋.  

If 𝑋𝑋 contains a nonzero element, this is also equivalent to the set of all elements of 
𝐾𝐾 that can be obtained from elements of 𝑋𝑋 by a finite sequence of field operations 
(addition, multiplication, additive inverses and multiplicative inverses).  

 

We use the notation ℚ(𝑋𝑋) for the subfield of ℂ generated by 𝑋𝑋.  

 

Definition: Let 𝐿𝐿:𝐾𝐾 be a field extension and 𝑌𝑌 ⊆ 𝐿𝐿 a subset of the large field. The 
subfield of 𝐿𝐿 generated by 𝐾𝐾 ∪ 𝑌𝑌 is denoted by 𝐾𝐾(𝑌𝑌).  

When 𝑌𝑌 = {𝛼𝛼} or 𝑌𝑌 = {𝛼𝛼1, … ,𝛼𝛼𝑛𝑛}, we write 𝐾𝐾(𝛼𝛼) and 𝐾𝐾(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) respectively, 
instead of 𝐾𝐾({𝛼𝛼}) or 𝐾𝐾({𝛼𝛼1, … ,𝛼𝛼𝑛𝑛}).  

 

 

 



Examples: 

• ℚ(𝑖𝑖) = {𝑝𝑝 + 𝑞𝑞𝑖𝑖 ∣ 𝑝𝑝, 𝑞𝑞 ∈ ℚ} 

• ℚ�√2� = {𝑝𝑝 + 𝑞𝑞√2 ∣ 𝑝𝑝, 𝑞𝑞 ∈ ℚ} 

• ℝ(𝑖𝑖) = ℂ 

• Let 𝛼𝛼 = 21/3 ∈ ℝ. Then ℚ(𝛼𝛼) = {𝑝𝑝 + 𝑞𝑞𝛼𝛼 + 𝑟𝑟𝛼𝛼2 ∣ 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 ∈ ℚ} 

• ℚ�𝑖𝑖,√5� = {𝑝𝑝 + 𝑞𝑞𝑖𝑖 + 𝑟𝑟√5 + 𝑠𝑠𝑖𝑖√5 ∣ 𝑝𝑝, 𝑞𝑞, 𝑟𝑟, 𝑠𝑠 ∈ ℚ}. 

 

It takes some work to verify the last two examples. The third one is obvious. As for 
the first two,  

 

Question 17: Prove that 𝐿𝐿 = {𝑝𝑝 + 𝑞𝑞𝑖𝑖 ∣ 𝑝𝑝, 𝑞𝑞 ∈ ℚ} and 𝑀𝑀 = {𝑝𝑝 + 𝑞𝑞√2 ∣ 𝑝𝑝, 𝑞𝑞 ∈ ℚ} 
are in fact fields.  

Hint: the only matter that is not completely straight forward is that these sets are 
closed under multiplicative inverses. That is, if 0 ≠ 𝑧𝑧 ∈ 𝐿𝐿, then 𝑧𝑧−1 ∈ 𝐿𝐿, and 
similarly for 𝑀𝑀.  

 

Definition: A simple extension is a field extension 𝐿𝐿:𝐾𝐾 such that 𝐿𝐿 = 𝐾𝐾(𝛼𝛼) for 
some 𝛼𝛼 ∈ 𝐿𝐿.  

That is, 𝐿𝐿 is obtained from 𝐾𝐾 by adjoining a single element 𝛼𝛼. Such an element is 
called a primitive element.  

 

Obviously, the extensions ℚ(𝑖𝑖),ℚ�√2� and ℚ�21/3� of ℚ that we saw in the 
examples above are simple extensions.  

 

What is not so obvious is that the extension ℚ�𝑖𝑖,√5�:ℚ is also a simple extension. 
In fact, ℚ�𝑖𝑖,√5� = ℚ�𝑖𝑖 + √5�. Can you prove this? 

 



Definition: A field extension 𝐿𝐿:𝐾𝐾 is finitely generated if there exist finitely many 
elements 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐿𝐿 such that 𝐿𝐿 = 𝐾𝐾(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛). 

 

It is clear that 𝐾𝐾(𝛼𝛼1,𝛼𝛼2) = 𝐿𝐿(𝛼𝛼2) where 𝐿𝐿 = 𝐾𝐾(𝛼𝛼1), so an easy induction shows 
that any finitely generated field extension can be obtained by a finite sequence of 
simple extensions.  

 

Algebraic and Transcendental Extensions 
 

There is a crucial distinction between two kinds of simple extensions 𝐾𝐾(𝛼𝛼):𝐾𝐾, 
which depends on whether or not 𝛼𝛼 satisfies a nonzero polynomial over 𝐾𝐾: 

 

Definition: Let 𝐿𝐿:𝐾𝐾 be a field extension. An element 𝛼𝛼 ∈ 𝐿𝐿 is algebraic over 𝐾𝐾 if 
∃ 0 ≠ 𝑓𝑓(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] such that 𝑓𝑓(𝛼𝛼) = 0. Otherwise 𝛼𝛼 is transcendental over 𝐾𝐾.  

If 𝛼𝛼 is algebraic over 𝐾𝐾, we say that 𝐾𝐾(𝛼𝛼):𝐾𝐾 is a simple algebraic extension. 

If 𝛼𝛼 is transcendental over 𝐾𝐾, we say that 𝐾𝐾(𝛼𝛼):𝐾𝐾 is a simple transcendental 
extension. 

 

Examples: 

• The complex numbers 𝑖𝑖,√3 and 𝛼𝛼 = 21/3 ∈ ℝ are algebraic over ℚ. They satisfy 
the nonzero polynomials 𝑡𝑡2 + 1, 𝑡𝑡2 − 3 and 𝑡𝑡3 − 2 (which have coefficients in ℚ) 
respectively. So ℚ(𝑖𝑖),ℚ�√3�, and ℚ(𝛼𝛼) are simple algebraic extensions of ℚ.  

• It is known that 𝑒𝑒 and 𝜋𝜋 are transcendental over ℚ. These facts are not easy to 
prove. This means that, for example, 𝜋𝜋 is not a root of any (nonzero) polynomial 
with rational coefficients. So ℚ(𝜋𝜋):ℚ is a simple transcendental extension.  

 

Question 18: Prove that ℚ�√3 + √5�:ℚ is a simple algebraic extension.  

 



Notes:  

• When a complex number 𝛼𝛼 ∈ ℂ is algebraic (respectively, transcendental) over 
ℚ, we simply say that 𝛼𝛼 is algebraic (respectively, transcendental). That is, in this 
context, we drop the “over ℚ”. For example, √3 + √5 is algebraic, and 𝜋𝜋 is 
transcendental.  

• It turns out that the set of all algebraic numbers forms a field. That means that 
this set includes 0 and 1 (why?) and is closed under field operations (addition, 
multiplication, additive and multiplicative inverses). The field of all algebraic 
numbers is denoted by 𝔸𝔸. It is a subfield of ℂ.  

 

Definition: The field extension 𝐿𝐿:𝐾𝐾 is algebraic if every element of 𝐿𝐿 is algebraic 
over 𝐾𝐾. 

 

The Minimal Polynomial 
 

Definition: A polynomial is monic if its leading coefficient is 1.  

So, a monic polynomial has form 𝑓𝑓(𝑡𝑡) = 𝑡𝑡𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑡𝑡𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑡𝑡 + 𝑎𝑎0.  

Note that the product of two monic polynomials is monic. Also, given a nonzero 
polynomial over a field, you can multiply it by a (unique) constant (the 
multiplicative inverse of the leading coefficient) and obtain a monic polynomial.  

 

Claim: Let 𝐿𝐿:𝐾𝐾 be a field extension and let 𝛼𝛼 ∈ 𝐿𝐿 be algebraic over 𝐾𝐾. Then there 
exists a unique monic polynomial 𝑚𝑚(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] of smallest degree such that 
𝑚𝑚(𝛼𝛼) = 0.  

 

Question 19: Can you prove this claim?  

Hint: By well order, there exists a monic polynomial 𝑚𝑚(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] of smallest 
possible degree such that 𝑚𝑚(𝛼𝛼) = 0. Suppose that 𝑚𝑚∗(𝑡𝑡) is another such 
polynomial. Show that in fact 𝑚𝑚 = 𝑚𝑚∗ by considering 𝑚𝑚 −𝑚𝑚∗. 



Definition: Let 𝐿𝐿:𝐾𝐾 be a field extension and let 𝛼𝛼 ∈ 𝐿𝐿 be algebraic over 𝐾𝐾. The 
unique monic polynomial 𝑚𝑚(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] of smallest degree such that 𝑚𝑚(𝛼𝛼) = 0 is 
called the minimal polynomial of 𝛼𝛼 over 𝐾𝐾. 

 

This polynomial is also called the irreducible polynomial for 𝛼𝛼 over 𝐾𝐾 and is 
denoted it by irr(𝛼𝛼,𝐾𝐾). This is ok, because an alternative definition for it is as the 
unique monic irreducible polynomial 𝑚𝑚(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] such that 𝑚𝑚(𝛼𝛼) = 0: 

 

Lemma: Let 𝐿𝐿:𝐾𝐾 be a field extension and let 𝛼𝛼 ∈ 𝐿𝐿 be algebraic over 𝐾𝐾. The 
minimal polynomial of 𝛼𝛼 over 𝐾𝐾 is irreducible over 𝐾𝐾, and it divides every 
polynomial 𝑓𝑓(𝑡𝑡) ∈ 𝐾𝐾[𝑡𝑡] for which 𝑓𝑓(𝛼𝛼) = 0. 

 

Let 𝑚𝑚(𝑡𝑡) be the minimal polynomial of 𝛼𝛼 over 𝐾𝐾. Note of course that if 𝑚𝑚 ∣ 𝑓𝑓 in 
𝐾𝐾[𝑡𝑡], then 𝑓𝑓(𝛼𝛼) = 0. Together with this lemma, we have that 𝑚𝑚 ∣ 𝑓𝑓 ⟺ 𝑓𝑓(𝛼𝛼) = 0. 

That is, the polynomials for which 𝛼𝛼 is a zero are precisely the multiples of 𝑚𝑚(𝑡𝑡). 

 

Examples: 

• The minimal polynomial of 𝑖𝑖 over ℚ or over ℝ is 𝑡𝑡2 + 1.  

• The minimal polynomial of √3 over ℚ is 𝑡𝑡2 − 3. However, the minimal 
polynomial of √3 over ℝ is simply 𝑡𝑡 − √3, since √3 ∈ ℝ. 

• More generally, if 𝛼𝛼 ∈ 𝐾𝐾, then the minimal polynomial of 𝛼𝛼 over 𝐾𝐾 is 𝑡𝑡 − 𝛼𝛼. 

• Let 𝜉𝜉5 = 𝑒𝑒2𝜋𝜋𝑖𝑖/5, the 5th root of 1 that makes an angle of measure 2𝜋𝜋/5 (radians) 
with the positive 𝑥𝑥-axis. Clearly 𝜉𝜉5 satisfies (is a zero of) the polynomial          
𝑡𝑡5 − 1 ∈ ℚ[𝑡𝑡]. Is this its minimal polynomial over ℚ? No, because this polynomial 
is not irreducible over ℚ. Clearly 1 is a zero, so 𝑡𝑡 − 1 is a factor. It is easy to check 
that 𝑡𝑡5 − 1 = (𝑡𝑡 − 1)(𝑡𝑡4 + 𝑡𝑡3 + 𝑡𝑡2 + 𝑡𝑡 + 1). Therefore, 𝜉𝜉5 is a zero of 𝑡𝑡4 + 𝑡𝑡3 +
𝑡𝑡2 + 𝑡𝑡 + 1. This polynomial is the minimal polynomial of 𝜉𝜉5 over ℚ. 

 

Question 20: Prove the last statement.  



Vector Spaces 
 

At this point we need to introduce some important concepts from linear algebra. 
You may already know a little about this subject if you studied systems of linear 
equations, matrices, and vectors.  

 

Definition: A vector space 𝑉𝑉 over a field 𝐾𝐾 consists of a set 𝑉𝑉, a field 𝐾𝐾, and maps 
+:𝑉𝑉 × 𝑉𝑉 → 𝑉𝑉 (vector addition) and ∗:𝐾𝐾 × 𝑉𝑉 → 𝑉𝑉 (scalar multiplication) such that 

(a) (𝑉𝑉, +) is an abelian group, and 

(b) ∀ 𝑘𝑘, 𝑘𝑘1, 𝑘𝑘2 ∈ 𝐾𝐾 and ∀ 𝑣𝑣, 𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉, scalar multiplication satisfies 

 • 𝑘𝑘1(𝑘𝑘2𝑣𝑣) = (𝑘𝑘1𝑘𝑘2)𝑣𝑣 

 • (𝑘𝑘1 + 𝑘𝑘2)𝑣𝑣 = 𝑘𝑘1𝑣𝑣 + 𝑘𝑘2𝑣𝑣 

 • 𝑘𝑘(𝑣𝑣1 + 𝑣𝑣2) = 𝑘𝑘𝑣𝑣1 + 𝑘𝑘𝑣𝑣2 

 • 1𝑣𝑣 = 𝑣𝑣 

 

It is easy to check that if 𝑉𝑉 is a vector space over 𝐾𝐾, then: 

• 0𝑣𝑣 = 0   ∀ 𝑣𝑣 ∈ 𝑉𝑉. Here the 0 on the left is in 𝐾𝐾 and the 0 on the right is in 𝑉𝑉.  

• 𝑘𝑘0 = 0   ∀𝑘𝑘 ∈ 𝐾𝐾. Here 0 is in 𝑉𝑉.  

• (−𝑘𝑘)𝑣𝑣 = 𝑘𝑘(−𝑣𝑣) = −(𝑘𝑘𝑣𝑣)   ∀𝑘𝑘 ∈ 𝐾𝐾,𝑣𝑣 ∈ 𝑉𝑉.  

 

Examples: 

• ℝ𝑛𝑛, the set of ordered 𝑛𝑛-tuples (𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) of real numbers, is a vector space over 
ℝ, where addition of vectors is by components, (𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) + (𝑏𝑏1, … ,𝑏𝑏𝑛𝑛) =
(𝑎𝑎1 + 𝑏𝑏1, … , 𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛), and scalar multiplication is given by 𝑘𝑘(𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) =
(𝑘𝑘𝑎𝑎1, … , 𝑘𝑘𝑎𝑎𝑛𝑛). We can replace ℝ with any field 𝐾𝐾. 

 



• 𝐾𝐾[𝑡𝑡], the ring of polynomials over a field 𝐾𝐾, is a vector space over 𝐾𝐾 where 
addition of vectors is the ordinary addition of polynomials and scalar 
multiplication is also the ordinary multiplication of polynomials, one of them being 
just a constant 𝑘𝑘 ∈ 𝐾𝐾. 

   

• If 𝑀𝑀 = 𝑀𝑀𝑚𝑚×𝑛𝑛(ℝ) denotes the set of all 𝑚𝑚 × 𝑛𝑛 matrices with real entries, then 𝑀𝑀 
is a vector space over ℝ. Addition is the usual matrix addition, and scalar 
multiplication consists of multiplying every entry of a matrix by the scalar. We can 
replace ℝ with any field 𝐾𝐾. 

 

• Let 𝑉𝑉 be the set of all functions 𝑓𝑓:ℝ → ℝ. Then 𝑉𝑉 is a vector space over ℝ. 
Addition is the usual (pointwise) addition of functions, and scalar multiplication is 
given by (𝑘𝑘𝑓𝑓)(𝑥𝑥) = 𝑘𝑘𝑓𝑓(𝑥𝑥) for all 𝑥𝑥 ∈ ℝ. We could also take 𝑉𝑉 to consist only of 
the continuous functions ℝ → ℝ.  

 

Example: If 𝐿𝐿:𝐾𝐾 is a field extension, then 𝐿𝐿 is a vector space over 𝐾𝐾. Addition of 
vectors and scalar multiplication are simply addition and multiplication in 𝐿𝐿. 

That is, if 𝛼𝛼,𝛽𝛽 ∈ 𝐿𝐿, then 𝛼𝛼 + 𝛽𝛽 is simply addition in L. As for scalar 
multiplication, say 𝑘𝑘 ∈ 𝐾𝐾 and 𝛼𝛼 ∈ 𝐿𝐿. Since 𝐾𝐾 ⊆ 𝐿𝐿, 𝑘𝑘 ∈ 𝐿𝐿 too, and 𝑘𝑘𝛼𝛼 is simply 
multiplication in 𝐿𝐿. 

This is the only kind of vector space that we will use.  

 

Let 𝑉𝑉 be a vector space over 𝐾𝐾. 

Definition: A subset 𝑆𝑆 ⊆ 𝑉𝑉 spans 𝑉𝑉 if every 𝑣𝑣 ∈ 𝑉𝑉 can be written in the form    
𝑣𝑣 = 𝑘𝑘1𝑣𝑣1 + ⋯+ 𝑘𝑘𝑛𝑛𝑣𝑣𝑛𝑛 for some 𝑛𝑛 ≥ 0, 𝑘𝑘𝑖𝑖 ∈ 𝐾𝐾, and 𝑣𝑣𝑖𝑖 ∈ 𝑆𝑆.  

The sum ∑ 𝑘𝑘𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1  is called a linear combination of 𝑣𝑣1, … ,𝑣𝑣𝑛𝑛.  

So, 𝑆𝑆 spans 𝑉𝑉 if every vector in 𝑉𝑉 is a linear combination of vectors in 𝑆𝑆.  

When 𝑆𝑆 spans 𝑉𝑉, we also say that the vectors of 𝑆𝑆 span 𝑉𝑉. 

 



Definition: The vector space 𝑉𝑉 is finite dimensional if there exists a finite set    
𝑆𝑆 ⊆ 𝑉𝑉 that spans 𝑉𝑉.  

 

Definition: The vectors in a subset 𝑆𝑆 ⊆ 𝑉𝑉 are linearly independent over 𝐾𝐾 if 
whenever 𝑘𝑘1𝑣𝑣1 + ⋯+ 𝑘𝑘𝑛𝑛𝑣𝑣𝑛𝑛 = 0 with 𝑛𝑛 ≥ 1, 𝑘𝑘𝑖𝑖 ∈ 𝐾𝐾, and 𝑣𝑣𝑖𝑖 ∈ 𝑆𝑆, we must have 
𝑘𝑘1 = ⋯ = 𝑘𝑘𝑛𝑛 = 0. Otherwise, they are linearly dependent over 𝐾𝐾. 

 

So, a set of vectors is linearly independent over 𝐾𝐾 if the only way to express the 
vector 0 as a linear combination of these vectors is by having all the scalar 
coefficients equal to zero.  

If the vectors are linearly dependent, there is a linear combination of them which 
equals 0 having scalar coefficients that are not all zero.  

 

Definition: A basis for 𝑉𝑉 over 𝐾𝐾 is a set 𝐴𝐴 ⊆ 𝑉𝑉 whose vectors span 𝑉𝑉 and are 
linearly independent over 𝐾𝐾.  

 

Every vector of 𝑉𝑉 can be written uniquely as a linear combination of basis 
elements with scalar coefficients.  

 

Example: A basis for ℝ3 over ℝ is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. It is easy to check 
that every element of ℝ3 can be written uniquely as a linear combination of these 
three vectors, with real coefficients. This is just like setting up coordinates.  

This example easily generalizes to ℝ𝑛𝑛 in an obvious way.  

 

Finally, we come to the definition of the dimension of a vector space over a field: 

 

Definition: Let 𝑉𝑉 be a vector space over 𝐾𝐾. The dimension of 𝑉𝑉 over 𝐾𝐾, denoted 
by dim𝐾𝐾𝑉𝑉 (or simply by dim 𝑉𝑉 when 𝐾𝐾 is understood), is the number of elements 
in any basis for 𝑉𝑉 over 𝐾𝐾.  



Examples:  

• The dimension of ℝ𝑛𝑛 over ℝ is 𝑛𝑛.  

• The dimension of 𝑀𝑀𝑚𝑚×𝑛𝑛(𝐾𝐾) over 𝐾𝐾 is 𝑚𝑚𝑛𝑛.  

• dimℝℂ = 2. A basis for ℂ over ℝ is {1, 𝑖𝑖}.  

• However, ℂ is infinite-dimensional over ℚ (as you are asked to prove below). 

 

Notes: 

• The fact that dim𝐾𝐾𝑉𝑉 is well defined, i.e., that every vector space has a basis, and 
that any basis has the same number of elements, is proved in linear algebra 
courses.  

• dim𝐾𝐾𝑉𝑉 is actually a cardinal number, meaning it is the cardinality of a set (a 
basis).  It could be finite or infinite. If it is finite, that is, if 𝑉𝑉 is finite dimensional, 
we write dim𝐾𝐾𝑉𝑉 < ∞.  

• Every set 𝑆𝑆 ⊆ 𝑉𝑉 that spans 𝑉𝑉 contains a subset 𝐴𝐴 ⊆ 𝑆𝑆 that is a basis for 𝑉𝑉 over 𝐾𝐾.  

• Every set 𝑆𝑆 ⊆ 𝑉𝑉 whose vectors are linearly independent over 𝐾𝐾 can be enlarged 
to a basis 𝐴𝐴 for 𝑉𝑉 over 𝐾𝐾. By “enlarged” we mean 𝑆𝑆 ⊆ 𝐴𝐴, of course. 

 

Question 21: Prove that there does not exist a finite basis for ℂ over ℚ. 

Hint: Find an infinite set of complex numbers that are linearly independent over ℚ. 
Use the fact that 𝜋𝜋 is transcendental.  

 

 

 

 

 

 

 



The Degree of a Field Extension 
 

Finally, we are ready to introduce the key concept that we will use to find a useful 
property of constructible numbers.  

Also, now we start numbering some of our results, so that we can refer back to 
them in subsequent proofs. 

 

Definition: The degree of the extension 𝐿𝐿:𝐾𝐾, also called the degree of 𝐿𝐿 over 𝐾𝐾, is 
the dimension of 𝐿𝐿 as a vector space over 𝐾𝐾.  

 

We denote the degree of 𝐿𝐿:𝐾𝐾 by [𝐿𝐿:𝐾𝐾]. So [𝐿𝐿:𝐾𝐾] = dim𝐾𝐾𝐿𝐿.  

If [𝐿𝐿:𝐾𝐾] < ∞, we say that the extension 𝐿𝐿:𝐾𝐾 is finite. 

 

Theorem 1: Let 𝐾𝐾(𝛼𝛼):𝐾𝐾 be a simple extension.  

If it is transcendental, then [𝐾𝐾(𝛼𝛼):𝐾𝐾] = ∞.   

If it is algebraic, then [𝐾𝐾(𝛼𝛼):𝐾𝐾] = 𝜕𝜕𝑚𝑚, where 𝑚𝑚 is the minimal polynomial of 𝛼𝛼 
over 𝐾𝐾.  

 

In fact, when 𝛼𝛼 is algebraic over 𝐾𝐾, we have that {1,𝛼𝛼, … ,𝛼𝛼𝑛𝑛−1} is a basis for 
𝐾𝐾(𝛼𝛼) over 𝐾𝐾, where 𝑛𝑛 = 𝜕𝜕𝑚𝑚.  

In this case, [𝐾𝐾(𝛼𝛼):𝐾𝐾] = 𝜕𝜕𝑚𝑚 is also called the degree of 𝛼𝛼 over 𝐾𝐾 and is denoted 
by deg (𝛼𝛼,𝐾𝐾).  

 

Tower Law: 

(a) If 𝐾𝐾 ⊆ 𝐿𝐿 ⊆ 𝑀𝑀 are fields, then [𝑀𝑀:𝐾𝐾] = [𝑀𝑀: 𝐿𝐿][𝐿𝐿:𝐾𝐾]. 

(b) More generally, if 𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ ⋯ ⊆ 𝐾𝐾𝑛𝑛 are fields then 

[𝐾𝐾𝑛𝑛 :𝐾𝐾0] = [𝐾𝐾𝑛𝑛:𝐾𝐾𝑛𝑛−1][𝐾𝐾𝑛𝑛−1:𝐾𝐾𝑛𝑛−2]⋯ [𝐾𝐾1:𝐾𝐾0] 



 

This law holds regardless of whether the extensions are finite or infinite, although 
we will only work with finite extensions. Part (b) follows from part (a) by an easy 
induction, and part (a) follows from the fact (can you prove it?) that if              
𝐴𝐴 = {𝑥𝑥𝑖𝑖 ∣ 𝑖𝑖 ∈ 𝐼𝐼} is a basis for 𝐿𝐿 over 𝐾𝐾 and 𝐴𝐴 = {𝑦𝑦𝑗𝑗 ∣ 𝑗𝑗 ∈ 𝐽𝐽} is a basis for 𝑀𝑀 over 𝐿𝐿, 
then 𝐴𝐴 = {𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 ∣ 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽} is a basis for 𝑀𝑀 over 𝐾𝐾.  

 

It is not hard to see, using the Tower Law, Theorem 1, and the quadratic formula, 
that: 

Claim 1: Let 𝐿𝐿:𝐾𝐾 be a field extension of degree 2, where char 𝐾𝐾 ≠ 2 (this means 
that 2 = 1 + 1 ≠ 0 in 𝐾𝐾). Then 𝐿𝐿 = 𝐾𝐾�√𝛼𝛼� for some 𝛼𝛼 ∈ 𝐾𝐾.  

 

The Constructible Numbers Revisited 
 

Recall that the set ℭ = {𝑧𝑧 ∈ ℂ ∣ 𝑧𝑧 is constructible} consists of those complex 
numbers 𝑧𝑧 such that there is a finite sequence of ruler and compass constructions 
using R, C, 𝑃𝑃𝑙𝑙𝑙𝑙,𝑃𝑃𝑙𝑙𝑙𝑙 and 𝑃𝑃𝑙𝑙𝑙𝑙  that begins with 0 and 1 and ends with 𝑧𝑧. 

 

Theorem 2: The set ℭ of all constructible numbers is a field. Moreover,  

(a) 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 ∈ ℭ if and only if 𝑎𝑎 ∈ ℭ and 𝑏𝑏 ∈ ℭ.   (Here 𝑎𝑎,𝑏𝑏 ∈ ℝ, of course) 

(b) 𝑧𝑧 ∈ ℭ ⟹ √𝑧𝑧 ∈ ℭ. 

 

(Of course, every nonzero complex number has two square roots. Statement (b) 
says that if 𝑧𝑧 is constructible, then both of its square roots are constructible, since 
they are simply opposites, and ℭ is a field). 

 

Denote by 𝐿𝐿(𝑧𝑧1, 𝑧𝑧2) the line that passes through 𝑧𝑧1 and 𝑧𝑧2 (here 𝑧𝑧1 ≠ 𝑧𝑧2). 

Denote by 𝐴𝐴(𝑧𝑧, 𝑟𝑟) the circle with center 𝑧𝑧 ∈ ℂ and radius 𝑟𝑟 > 0.  



Proof: To show that ℭ is a field, we must show that it contains 0 and 1, it is closed 
under addition and multiplication, it contains the opposite of any of its elements, 
and it contains the multiplicative inverse of any of its nonzero elements.  

• By definition, 0 ∈ ℭ and 1 ∈ ℭ. 

• Given 0 ≠ 𝑧𝑧 ∈ ℭ, 𝐿𝐿(0, 𝑧𝑧) and 𝐴𝐴(0, |𝑧𝑧|) intersect at ±𝑧𝑧. So −𝑧𝑧 ∈ ℭ.  

(Of course, if 𝑧𝑧 = 0, then −𝑧𝑧 = 0 ∈ ℭ) 

• Given 𝑧𝑧,𝑤𝑤 ∈ ℭ, then the “parallelogram law” tells us how to construct 𝑧𝑧 + 𝑤𝑤 
when 0, 𝑧𝑧 and 𝑤𝑤 are not collinear: 𝐴𝐴(𝑧𝑧, |𝑤𝑤|) and 𝐴𝐴(𝑤𝑤, |𝑧𝑧|) have 𝑧𝑧 + 𝑤𝑤 as one of its 
points of intersection. When 0, 𝑧𝑧 and 𝑤𝑤 are collinear, it is even easier to construct 
𝑧𝑧 + 𝑤𝑤. So 𝑧𝑧 + 𝑤𝑤 ∈ ℭ.  

 

So far, we have proved that ℭ is a group under addition (and 1 ∈ ℭ).  

 

• Next we prove statement (a): 

If 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 ∈ ℭ, drop perpendiculars from 𝑧𝑧 to the 𝑥𝑥- and 𝑦𝑦-axes (which 
obviously can be constructed). We get 𝑎𝑎 ∈ ℭ and 𝑖𝑖𝑏𝑏 ∈ ℭ. Now 𝐴𝐴(0, |𝑖𝑖𝑏𝑏|) intersects 
the 𝑥𝑥-axis at 𝑏𝑏, so 𝑏𝑏 ∈ ℭ.  

Conversely, if 𝑎𝑎 ∈ ℭ and 𝑏𝑏 ∈ ℭ (where 𝑎𝑎, 𝑏𝑏 ∈ ℝ), then 𝐴𝐴(0, |𝑏𝑏|) intersects the     
𝑦𝑦-axis at 𝑖𝑖𝑏𝑏. So 𝑖𝑖𝑏𝑏 ∈ ℭ and therefore 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 ∈ ℭ by what we already proved.  

 

• To prove that ℭ is closed under multiplication and reciprocals, we will first prove 
an intermediate result: ℭ ∩ {𝑥𝑥 ∈ ℝ ∣ 𝑥𝑥 > 0} is closed under multiplication and 
reciprocals. The following picture shows why this is true. From 𝑎𝑎 or 𝑏𝑏, we 
construct 𝑖𝑖𝑎𝑎 or 𝑖𝑖𝑏𝑏, then draw appropriate parallel lines, and then we reason with 
similar triangles. You provide the details. 

 



It follows immediately that ℭ ∩ ℝ is a field.  

Now we can show that ℭ is closed under multiplication and reciprocals: 

Let 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑏𝑏 ∈ ℭ and 𝑤𝑤 = 𝑐𝑐 + 𝑖𝑖𝑑𝑑 ∈ ℭ. Then 𝑧𝑧𝑤𝑤 = (𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑑𝑑) + 𝑖𝑖(𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐). 
Using statement (a), then the fact that ℭ ∩ ℝ is a field, and then statement (a) 
again, it follows that 𝑧𝑧𝑤𝑤 ∈ ℭ. 

Similarly, if 𝑧𝑧 ≠ 0, then 1
𝑧𝑧

= 𝑎𝑎
𝑎𝑎2+𝑏𝑏2

− 𝑖𝑖 𝑏𝑏
𝑎𝑎2+𝑏𝑏2

 , and using the same reasoning, we see 

that 1
𝑧𝑧
∈ ℭ.  

 

Now we have completed the proof that ℭ is a field. 

• All that remains is to prove statement (b): 

Let 0 ≠ 𝑧𝑧 ∈ ℭ. Write 𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑖𝑖𝜃𝜃 with 0 < 𝑟𝑟 = |𝑧𝑧| ∈ ℝ. We need to construct      
𝑤𝑤 = √𝑟𝑟𝑒𝑒𝑖𝑖𝜃𝜃/2. It is clear since 𝑧𝑧 ∈ ℭ that we can construct an angle of measure 𝜃𝜃. 
Since we can bisect it, we can construct an angle of measure 𝜃𝜃/2. It is then also 
clear that if we can construct √𝑟𝑟, then we can construct 𝑤𝑤 = √𝑧𝑧 and we will be 
done. You can check that it is possible to construct 𝛼𝛼 as in the following picture, 
and (using similar triangles) that the segment joining 1 to 𝛼𝛼 has length √𝑟𝑟. 

 

Therefore √𝑧𝑧 ∈ ℭ and we are done.                                       ⎕ 

 

 



Definition: The Pythagorean closure ℚpy of ℚ is the smallest subfield 𝐾𝐾 ⊆ ℂ with 
the property that 𝑧𝑧 ∈ 𝐾𝐾 ⟹ √𝑧𝑧 ∈ 𝐾𝐾. 

 

That is, ℚpy is the smallest subfield of ℂ that contains the square roots of all its 
elements. It is the intersection of all subfields of ℂ having that property.  

It can also be described as the subfield of ℂ obtained from 0 and 1 by using a finite 
sequence of field operations and square roots.  

 

Theorem 3: ℭ = ℚpy.  

 

Proof: From the last theorem, ℭ is a subfield of ℂ that contains the square roots of 
all its elements. By the definition of ℚpy as the smallest such field, we have     
ℚpy⊆ ℭ.  

The details of the reverse inclusion ℭ ⊆ ℚpy are tedious, but the idea is simple. 
Any 𝑧𝑧 ∈ ℭ is obtained from 0 and 1 by a finite sequence of constructions using R, 
C, 𝑃𝑃𝑙𝑙𝑙𝑙,𝑃𝑃𝑙𝑙𝑙𝑙 and 𝑃𝑃𝑙𝑙𝑙𝑙 . Each constructed point along the sequence is the result of 
intersecting two lines, or a line and a circle, or two circles. And each such 
intersection is a solution of a system of equations that can always be expressed 
using field operations and square roots starting from previously constructed points 
(numbers). Therefore 𝑧𝑧 ∈ ℚpy.  ⎕ 

 

Theorem 4: 𝑧𝑧 ∈ ℭ if and only if there exists a finite tower  

ℚ = 𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ 𝐾𝐾2 ⊆ ⋯ ⊆ 𝐾𝐾𝑛𝑛−1 ⊆ 𝐾𝐾𝑛𝑛 

of subfields of ℂ such that 𝑧𝑧 ∈ 𝐾𝐾𝑛𝑛 and [𝐾𝐾𝑖𝑖:𝐾𝐾𝑖𝑖−1] = 2 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. 

 

Proof:  

• First suppose that ℚ = 𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ 𝐾𝐾2 ⊆ ⋯ ⊆ 𝐾𝐾𝑛𝑛−1 ⊆ 𝐾𝐾𝑛𝑛 is a tower of subfields 
of ℂ such that 𝑧𝑧 ∈ 𝐾𝐾𝑛𝑛 and [𝐾𝐾𝑖𝑖:𝐾𝐾𝑖𝑖−1] = 2 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. We show by induction that 
𝐾𝐾𝑖𝑖 ⊆ ℭ for 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Then it follows that 𝑧𝑧 ∈ ℭ, since 𝑧𝑧 ∈ 𝐾𝐾𝑛𝑛 ⊆ ℭ. 



ℚ = 𝐾𝐾0 ⊆ ℭ because ℭ is a subfield of ℂ and every subfield of ℂ contains ℚ.  

Suppose 𝐾𝐾𝑖𝑖−1 ⊆ ℭ. Since [𝐾𝐾𝑖𝑖 :𝐾𝐾𝑖𝑖−1] = 2, Claim 1 above says that 𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑖𝑖−1�√𝛼𝛼� 
for some 𝛼𝛼 ∈ 𝐾𝐾𝑖𝑖−1. Since 𝐾𝐾𝑖𝑖−1 ⊆ ℭ, 𝛼𝛼 ∈ ℭ. Therefore √𝛼𝛼 ∈ ℭ, since ℭ contains 
the square roots of all its elements (recall either statement (b) of Theorem 2 or 
Theorem 3: ℭ = ℚpy). Therefore 𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑖𝑖−1�√𝛼𝛼� ⊆ ℭ.   ▪ 

 

• Conversely, suppose that 𝑧𝑧 ∈ ℭ. Since ℭ = ℚpy, 𝑧𝑧 can be obtained from 0 and 1 
(equivalently, from ℚ) by a finite sequence of field operations and square roots. 
Each step in this sequence either can be performed in the same field or requires 
adjoining a square root that produces a field extension of degree 2. Therefore, 
discarding the repeated fields, we get a tower ℚ = 𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ ⋯ ⊆ 𝐾𝐾𝑛𝑛−1 ⊆ 𝐾𝐾𝑛𝑛 of 
subfields of ℂ such that 𝑧𝑧 ∈ 𝐾𝐾𝑛𝑛 and [𝐾𝐾𝑖𝑖:𝐾𝐾𝑖𝑖−1] = 2 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛.   ▪      ⎕ 

 

Finally, we are ready to state a useful necessary condition for a complex number to 
be constructible: 

 

Theorem 5: If 𝛼𝛼 ∈ ℭ, then [ℚ(𝛼𝛼):ℚ] = deg(𝛼𝛼,ℚ) = 2𝑚𝑚 for some 𝑚𝑚 ≥ 0.  

 

Therefore, every constructible number is algebraic, and the degree of its minimal 
polynomial over ℚ is a power of 2, by Theorem 1.  

 

Proof: Let 𝛼𝛼 ∈ ℭ. By Theorem 4, there exists a finite tower  

ℚ = 𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ 𝐾𝐾2 ⊆ ⋯ ⊆ 𝐾𝐾𝑛𝑛−1 ⊆ 𝐾𝐾𝑛𝑛 

of subfields of ℂ such that 𝛼𝛼 ∈ 𝐾𝐾𝑛𝑛 and [𝐾𝐾𝑖𝑖:𝐾𝐾𝑖𝑖−1] = 2 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. 

By the Tower Law, [𝐾𝐾𝑛𝑛:ℚ] = 2𝑛𝑛. But we also have ℚ ⊆ ℚ(𝛼𝛼) ⊆ 𝐾𝐾𝑛𝑛. Using the 
Tower Law again, 2𝑛𝑛 = [𝐾𝐾𝑛𝑛:ℚ] = [𝐾𝐾𝑛𝑛:ℚ(𝛼𝛼)][ℚ(𝛼𝛼):ℚ].  

Therefore [ℚ(𝛼𝛼):ℚ] ∣ 2𝑛𝑛, and so [ℚ(𝛼𝛼):ℚ] = 2𝑚𝑚 for some 0 ≤ 𝑚𝑚 ≤ 𝑛𝑛.      ⎕ 

 



Caution: Theorem 5 gives a necessary condition for a complex number to be 
constructible. But it does not give a sufficient condition: its converse is false.  

That is, if 𝛼𝛼 ∈ ℂ has degree 2𝑚𝑚 over ℚ, it does not follow that 𝛼𝛼 ∈ ℭ.  

 

Question 22: Decide whether or not each of the following numbers can be 
constructed with ruler and compass: 

(a) 𝛼𝛼 = 2 + �3 + �5 + √7 + 𝑖𝑖 

(b) The real root of the polynomial 𝑓𝑓(𝑡𝑡) = 5𝑡𝑡11 + 10𝑡𝑡3 + 4𝑡𝑡 + 6 

 

Impossibility Proofs 
 

Finally, we are ready to prove the impossibility of doubling the cube, trisecting the 
angle, and squaring the circle. Keep in mind, despite how easy this will be to us 
now, that these problems were open for about 2000 years!  

 

Claim 2: 𝛼𝛼 = 21/3 ∈ ℝ (the real cube root of 2) is irrational.  

 

Proof: Suppose for a contradiction that 𝛼𝛼 ∈ ℚ. Write 𝛼𝛼 = 𝑘𝑘
𝑙𝑙
 where 𝑘𝑘, 𝑙𝑙 ∈ ℤ. Then 

2 = 𝛼𝛼3 = 𝑘𝑘3

𝑙𝑙3
, so 𝑘𝑘3 = 2𝑙𝑙3. But this is impossible by unique prime factorization in 

ℤ, because the power of 2 that exactly divides 𝑘𝑘3 is a multiple of 3, while the 
power of 2 that exactly divides 2𝑙𝑙3  is  ≡ 1 mod 3. Therefore 𝛼𝛼 ∉ ℚ.       ⎕ 

 

 

 

 

 



Theorem 6: The cube cannot be doubled by ruler and compass.  

 

Proof: Doubling the cube is clearly equivalent to constructing 𝛼𝛼 = 21/3 ∈ ℝ.  

But the minimal polynomial of 𝛼𝛼 over ℚ is 𝑡𝑡3 − 2. Therefore [ℚ(𝛼𝛼):ℚ] = 3.  

By Theorem 5, 𝛼𝛼 ∉ ℭ.       ⎕ 

 

Question 23: Why is doubling the cube equivalent to constructing 𝛼𝛼 = 21/3 ∈ ℝ ? 

 

For the impossibility of squaring the circle, we must take for granted the fact that 𝜋𝜋 
is transcendental (as we mentioned a while back, this is not easy to prove). 

 

Theorem 7: The circle cannot be squared by ruler and compass.  

 

Proof: Squaring the circle is clearly equivalent to constructing √𝜋𝜋. Suppose that 
√𝜋𝜋 ∈ ℭ. Then (since ℭ is a field) 𝜋𝜋 ∈ ℭ. But then Theorem 5 implies that 𝜋𝜋 is 
algebraic, a contradiction.    ⎕ 

  

Question 24: Why is squaring the circle equivalent to constructing √𝜋𝜋 ? 

 

Theorem 8: The angle cannot be trisected by ruler and compass. 

 

Proof: It suffices to exhibit a single angle that cannot be trisected. Below we 
exhibit such an angle.       ⎕ 

 

Of course, some angles can be trisected (like the straight angle and the right angle). 
But the theorem says that it is impossible to trisect a general, arbitrary angle.  

 



Theorem 9: The angle of measure 2𝜋𝜋/3 cannot be trisected by ruler and compass.  

 

Proof: Trisecting this angle is clearly equivalent to constructing 𝜉𝜉9 = 𝑒𝑒2π𝑖𝑖/9. Now, 
if 𝜉𝜉9 ∈ ℭ, then 𝜉𝜉9 + 𝜉𝜉9−1 ∈ ℭ. But we will show that 𝛼𝛼 = 𝜉𝜉9 + 𝜉𝜉9−1 ∉ ℭ.  

Let 𝑤𝑤 = 𝜉𝜉3 = ξ93 = 𝑒𝑒2π𝑖𝑖/3. It is easy to see that 𝑤𝑤2 + 𝑤𝑤 + 1 = 0 (by direct 
calculation, or by symmetry, or by noting that the minimal polynomial of 𝑤𝑤 over ℚ 
is 𝑡𝑡2 + 𝑡𝑡 + 1).  Therefore 𝜉𝜉96 + 𝜉𝜉93 = −1. Now,  

𝛼𝛼3 = (𝜉𝜉9 + 𝜉𝜉9−1)3 = 𝜉𝜉93 + 3𝜉𝜉9 + 3𝜉𝜉9−1 + 𝜉𝜉9−3 

Since 𝜉𝜉9−3 = 𝜉𝜉9−3 ⋅ 1 = 𝜉𝜉9−3 ⋅ 𝜉𝜉99 = 𝜉𝜉96, we get  

𝛼𝛼3 = 𝜉𝜉93 + 3𝜉𝜉9 + 3𝜉𝜉9−1 + 𝜉𝜉96 = 3𝛼𝛼 − 1 

and so 𝛼𝛼 is a zero of the polynomial 𝑡𝑡3 − 3𝑡𝑡 + 1 ∈ ℚ[𝑡𝑡]. But this polynomial is 
irreducible over ℚ (see below), so it is the minimal polynomial of 𝛼𝛼 over ℚ. Since 
its degree is not a power of 2, 𝛼𝛼 ∉ ℭ by Theorem 5.     ⎕ 

 

The irreducibility of 𝑡𝑡3 − 3𝑡𝑡 + 1 over ℚ follows from Gauss’s Lemma, since it is 
easy to see that it has no zeros in ℤ and therefore it is irreducible over ℤ, by the 
Factor Theorem and the fact that the polynomial has degree 3. Even easier, it has 
no roots in ℚ by the “Rational Roots Theorem” from high school, which in this 
case tells us that the only possible rational roots are ±1 (clearly neither is a root). 

 

The Constructible Regular Polygons 
 

We have proved the impossibility of doubling the cube, trisecting the angle, and 
squaring the circle by ruler and compass.  

The other famous problem that the Greeks were unable to solve is to determine 
precisely which regular polygons can be constructed by ruler and compass.  

 

The ancient Greeks knew how to construct the regular pentagon. Obviously, they 
also could construct the equilateral triangle, the square, and the regular hexagon.  



In general, they were quite good at finding constructions when they are possible, 
but they were unable to prove the impossibility of other constructions. Also, they 
missed the construction of the regular 17-gon. This is understandable, as this 
construction is very elaborate. It was Gauss who found it (in 1796, when he was 19 
years old). He went on to determine exactly which regular polygons can be 
constructed by ruler and compass. Here are some basic ideas: 

 

• The regular 𝑛𝑛-gon is constructible if and only if 𝜉𝜉𝑛𝑛 = 𝑒𝑒2π𝑖𝑖/𝑛𝑛 is constructible.  

We proved this near the beginning. 

 

• Since we can bisect any angle, if we can construct the regular 𝑛𝑛-gon, then we can 
construct the regular 2𝑛𝑛-gon. 

 

• If the regular 𝑚𝑚-gon and the regular 𝑛𝑛-gon are constructible and 𝑚𝑚, 𝑛𝑛 are 
coprime, then the regular 𝑚𝑚𝑛𝑛-gon is constructible.  

This is true because, since gcd(𝑚𝑚,𝑛𝑛) = 1, there exist integers 𝑎𝑎, 𝑏𝑏 such that   
𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑛𝑛 = 1. Therefore 𝑎𝑎 2𝜋𝜋

𝑛𝑛
+ 𝑏𝑏 2𝜋𝜋

𝑚𝑚
= 2𝜋𝜋

𝑚𝑚𝑛𝑛
.  

 

Question 25: Finish the proof that the regular 𝑚𝑚𝑛𝑛-gon is constructible if the 
regular 𝑚𝑚-gon and the regular 𝑛𝑛-gon are both constructible and gcd(𝑚𝑚,𝑛𝑛) = 1. 

 

The Greeks knew the last two bullets. Since they could construct the regular 𝑛𝑛-gon 
for 𝑛𝑛 = 3, 4, 5, they knew that they could construct them for  

𝑛𝑛 = 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, …  

 

The first missing case in this list is 𝑛𝑛 = 7. Can the regular heptagon be constructed 
with ruler and compass? No, it cannot: 

 



Theorem 10: The regular heptagon cannot be constructed by ruler and compass.  

 

Proof: We show, equivalently, that 𝜉𝜉7 = 𝑒𝑒2𝜋𝜋𝑖𝑖/7 ∉ ℭ. Since 𝜉𝜉77 = 1, the minimal 
polynomial of 𝜉𝜉7 over ℚ divides 𝑡𝑡7 − 1.  

But 𝑡𝑡7 − 1 = (𝑡𝑡 − 1)(𝑡𝑡6 + 𝑡𝑡5 + 𝑡𝑡4 + 𝑡𝑡3 + 𝑡𝑡2 + 𝑡𝑡 + 1) and the second factor is 
irreducible over ℚ (why?). Therefore, this second factor is the minimal polynomial 
of 𝜉𝜉7 over ℚ. Its degree is not a power of 2, so 𝜉𝜉7 ∉ ℭ by Theorem 5.  ⎕ 

 

By Theorem 9, the regular 9-gon cannot be constructed either. How about the cases 
𝑛𝑛 = 11, 13, 14, 17, 18, 19, … ? Using the third bullet above, we can reduce the 
problem to the case when 𝑛𝑛 is a prime power. But this is still a difficult problem.  

Using marvelous ideas involving the interplay between group theory and field 
extensions, Gauss was able to completely settle the question: 

 

Theorem 11: Let 𝑛𝑛 > 2 be an integer. The regular 𝑛𝑛-gon can be constructed with 
ruler and compass if and only if 𝑛𝑛 = 2𝑟𝑟𝑝𝑝1 ⋯𝑝𝑝𝑠𝑠 , where 𝑟𝑟 ≥ 0 and 𝑠𝑠 ≥ 0 are 
integers and the 𝑝𝑝𝑖𝑖 are distinct Fermat primes.  

 

A Fermat prime is a prime of form 𝑝𝑝 = 22𝑘𝑘 + 1. Fermat thought that 𝐴𝐴𝑘𝑘 = 22𝑘𝑘 + 1 
is prime for all 𝑘𝑘 ≥ 0 (𝐴𝐴0 = 3,𝐴𝐴1 = 5,𝐴𝐴2 = 17,𝐴𝐴3 = 257,𝐴𝐴4 = 65537 are indeed 
prime). But he was wrong: Euler showed that 𝐴𝐴5 is not prime. In fact, Fermat was 
very wrong: as of 2021, the above numbers 3, 5, 17,  257 and 65537 are the only 
known Fermat primes, and heuristic arguments suggest that these are very likely 
the only ones.  

 

Question 26: Decide whether or not the regular 𝑛𝑛-gon is constructible from ruler 
and compass for each of the following values of 𝑛𝑛: 

(a) 25    (b) 51    (c) 768    (d) 771    (e) 𝑝𝑝2 for an odd prime 𝑝𝑝    (f) 2𝑘𝑘 for 𝑘𝑘 > 1 

 


